
Ilnaz Nizametdinov,

YDB Senior Software Developer

Andrey Fomichev,

Head of YDB

Parallel Asynchronous Replication
between YDB Database Instances

1. Intro and Problem Statement

2. YDB Architecture in 5 minutes

3. An Approach to Asynchronous
Replication in YDB

4. Dealing with multiple logs

5. Distributed Transactions in YDB

6. Globally ordered log 
and consistency

YDB

YDB — Open-source 
Distributed SQL Database

Database Distributed SQL means

Multiple servers

Strongly consistent Relational database

Open Source

Apache 2.0 License

clck.ru/rdFQw

http://clck.ru/rdFQw

4

YDB Facts

Consistency& 
Serializable 
transaction
execution

CAP-theorem, 
prefer CP

Serializable
transaction 
isolation level

Mission critical
database

Works for projects
with 24x7
requirements

No maintenance 
windows required

Highly
available

Runs in multiple
Availability Zones
(AZ)

Survives AZ plus
rack failure w/o
human
intervention,
available for read/

Platform

Topics, block
store, time series,
etc

Mostly OLTP
workload

Column store
plus ETL are in
progress

5

Synchronous vs Asynchronous
Replication in a Database

User

1 2

34

1 2

3

Synchronous 
Replication

Asynchronous 
Replication User

6

Different types of
replication are possible
even in single database
installation

YDB is a database with
strict consistency, so by
default the replication is
synchronous

Nevertheless asynchronous replication is also available in
YDB — so called read replicas; they are used for

Read workload scalability

Even infinitely scalable database may have problems, 
if you would like to perform 1M rps for a single key

Latency optimization for read queries, i.e. read replicas may run in
every AZ to avoid cross-AZ read queries

Comes with relaxed guarantees

Synchronous vs Asynchronous
Replication in YDB

7

Asynchronous
Replication
between YDB
instances

changefeed
Source YDB 
Cluster

Target YDB
Cluster

8

Why do We Need Asynchronous
Replication between YDB instances?
Disaster Recovery, hot Standby

Even fault tolerant systems may experience availability issues

Recovery from backup may be unacceptably time consuming process

Regional clusters

Spread YDB cluster over continents introduce high write latency

Different load patterns

OLTP and OLAP load patterns

Regulatory Compliance (GDPR)

User table per country, replicate to other regions

9

What guarantees are expected 
from asynchronous replication?

1, 2, 3, 4, 5, 6, 7, …

3,7 4,8 3,7 4,7

Strong ordering

Global consistency

Adequate delays

1. Intro and Problem Statement

2. YDB Architecture in 5 minutes

3. An Approach to Asynchronous
Replication in YDB

4. Dealing with multiple logs

5. Distributed Transactions in YDB

6. Globally ordered log 
and consistency

11

Share Nothing
Architecture
Cluster of nodes, share nothing
architecture, commodity hardware

12

Tables and Queries

ID Value1 Value2

GX008 8921 1114

GX278 827 9

GY045 654 345

SK720 3445 3456

SM527 7668 7643

UA628 72 3928

SQL Query

Key Data

82 8921

283 827

346 654

1273 3445

Tables are sorted by
primary key

Key Data

82 8921

283 827

346 654

1273 3445

13

Table Partitioning

ID Value1 Value2

GX008 8921 1114

GX278 827 9

GY045 654 345

SK720 3445 3456

SM527 7668 7643

UA628 72 3928

DataShard

All tables data are split
into partitions, partitions
are stored in Tablets

DataShard

DataShard

DataShard

DataShard

14

Inside Tablet (1)
Tablet is a core part of YDB

It provides API to the upper level, for instance

• Insert row

• Delete row

• Read row

You can think about tablet as an adapter to the
data stored in Distributed Storage

• Tablet usually has volatile data cache

• On "update" operation tablet writes a record to the log

• table can die because of node failure 

or other reasons and run at another node

Technically, tablet implementation 
is a set of C++ classes

Tablet

Distributed Storage

15

Inside Tablet (2)
Replication State Machine

• Writes a log of changes

• Recovers from log on tablet crash

• Provides guarantees analogous to RAFT and Paxos

Tablet’s Database

• Data is organised as an LSM-tree 
(Log Structured Merge Tree)

• Guarantees ACID properties for the data it is in charge

Tablet’s Logic is specific for the Tablet type

• Can implement different APIs

• Can be active component

Distributed Storage provides reliable data storage
with redundancy

Tablet’s Logic

Tablet’s Database

Replication State
Machine

Distributed Storage

16

DataShard
Split/Merge

Data in tables and DataShard lives it
own live

• Key range can grow and become too large

for one tablet

• Key range can decrease, so we get too

many small tablets

DataShards can automatically

• Split on multiple DataShards

• Merge with their neighbours 

to form a larger DataShard

DataShard

DataShard

DataShardDataShard

Split

Merge

Split

Merge

1. Intro and Problem Statement

2. YDB Architecture in 5 minutes

3. An Approach to Asynchronous
Replication in YDB

4. Dealing with multiple logs

5. Distributed Transactions in YDB

6. Globally ordered log 
and consistency

18

Asynchronous
replication
between
relational DBs

• DB is hosted on 
a single server

• There is a lot 
of tables in DB

• But single log 
(e.g. binlog)

Log

…

Tables

Server Server

Source DB

Replicated DB

R1 R2 Rn

Tables

DataShard

19

Asynchronous
replication
between 
YDB DBs

• DB is hosted on
multiple servers

• Each table is a set
of DataShards

• Can there be 
a single log?

Log

YDB Tables Replicated DB

…

DataShard

DataShard

DataShard

DataShard

…

…R1 R2 Rn

…

DataShard

20

Can there be 
a single log?

Log

Server

DataShard

…R1 R2 Rn

21

Can there be 
a single log?

Log

Server

DataShard

…R1 R2 Rn

DataShard

…

DataShard

22

Can there be 
a single log?

Log

Server

DataShard

…R1 R2 Rn

DataShard

…

DataShard

Server

DataShard

DataShard

…

DataShard

Server

DataShard

DataShard

…

DataShard

23

Design decision 
for asynchronous
replication

The log is a FIFO data structure

A single log has scalability limitations

So we need multiple logs

DataShard

24

Asynchronous
replication
between 
YDB DBs

• Each DataShard
has its own log

• Normally this log is
small

• But it can growth in
case of connectivity
issues

YDB Tables Replicated DB

…

DataShard

DataShard

…

…

DataShard

Table data Log

DataShard

Table data Log

DataShard

Table data Log

DataShard

Log: [1; 10]

25

Log growth
causes
problems

• Table data 
is sorted by PK

• Log is sorted in the
order in which the
changes appeared

• Splitting the log is
non-trivial

Table data: [A; C)

DataShard

Log: [?; ?]

Table data: [A; B)

DataShard

Log: [?; ?]

Table data: [B; C)

Split

DataShard

Log: <empty>

26

Log growth
causes
problems

• Instead of splitting
the log, it possible 
to empty log before
split

• But this will cause 
a service interruption

• Its duration depends
on the size of the log

Table data: [A; C)

DataShard

Log: [?; ?]

Table data: [A; B)

DataShard

Log: <empty>

Table data: [B; C)

Split

Service 
Interruption

DataShard

Log: [1; 10]

Table data: [A; C)
Empty 

log

27

Problems 
of asynchronous
replication

A lot of DataShards each
with its own log

Connectivity issues will
cause the log to growth

Large log will cause
service interruption during
DataShard split

28

Transferring log
to specialized
storage

• Specialized storage
solves the log growth
problem

• DataShard log
remains small

• Storage’s partitions
can store logs for a
long time

YDB Tables

…

DataShard

Table data Log

DataShard

Table data Log

DataShard

Table data Log

…

Partition

Partition

Partition

Topic

29

Topic — log
storage in YDB

• Topic —
implementation of
Kafka-like topic in
YDB

• Topic partition is
another type of YDB
tablet

…

Partition

Partition

Partition

Topic

30

Additional
benefits of using
Topic

• Few (one)
DataShards can
generate large log

• E.g. frequently
updated small set of
keys

• A lot of partitions are
required to store such
log

…

Partition

Partition

Partition

YDB Tables

DataShard

Table data Log

Topic

31

Additional
benefits of using
Topic

• Vice versa, a lot of
DataShards can
generate a small log

• Few (one) partitions
is enough to store
such log

Partition

YDB Tables

…

DataShard

Table data Log

DataShard

Table data Log

DataShard

Table data Log

Topic

1. Intro and Problem Statement

2. YDB Architecture in 5 minutes

3. An Approach to Asynchronous
Replication in YDB

4. Dealing with multiple logs

5. Distributed Transactions in YDB

6. Globally ordered log 
and consistency

33

How to transfer
log to Topic?

How are DataShards and Topic
partitions related?

How to write and read globally
ordered log in Topic partition?

34

DataShard-Topic
partition relation

• Random

• N:M (1:1, 1:M, N:1)

• Consistent hashing ?

…

Partition

Partition

Partition

YDB Tables

…

DataShard

Table data Log

DataShard

Table data Log

DataShard

Table data Log

Topic

35

DataShard-Topic
partition relation

• > Random

• N:M (1:1, 1:M, N:1)

• Consistent hashing

…

Partition

Partition

Partition

YDB Tables

…

DataShard

Table data Log

DataShard

Table data Log

DataShard

Table data Log

Topic

36

DataShard-Topic
partition relation

• Random

• > N:M (1:1, 1:M, N:1)

• Consistent hashing

…

Partition

Partition

Partition

YDB Tables

…

DataShard

Table data Log

DataShard

Table data Log

DataShard

Table data Log

Topic

37

DataShard-Topic
partition relation

• Random

• N:M (1:1, 1:M, N:1)

• > Consistent
hashing

…

Partition

Partition

Partition

YDB Tables

…

DataShard

Table data Log

DataShard

Table data Log

DataShard

Table data Log

Topic

38

Why consistent
hashing?

• Each modification of specific row
appears in the same Topic
partition

• Provides ordered row-level
modifications (as well as N:M)

• Easier to implement than N:M

39

How to write to Topic?

YDB Tables

Log

…A1 A2 An

Table data

DataShard A

Log

…B1 B2 Bn

Table data

DataShard B

…

Topic

…

Partition

Partition

Partition

A1

Route by Hash(PK)

40

How to write to Topic?

YDB Tables

Log

…A2 An

Table data

DataShard A

Log

…B1 B2 Bn

Table data

DataShard B

…

…

Partition

Partition

Partition

A1

Ack

Topic

41

How to write to Topic?

YDB Tables

Log

…A2 An

Table data

DataShard A

Log

…B1 B2 Bn

Table data

DataShard B

…

…

Partition

Partition

Partition

A2

A1

Topic

42

How to write to Topic?

YDB Tables

Log

…A2 An

Table data

DataShard A

Log

…B1 B2 Bn

Table data

DataShard B

…

…

Partition

Partition

Partition

A2

A1

Topic

43

Delivery 
problems

Tablets (DataShards, Topic
partitions) can restart due to

Cluster updates

Hardware failures

Balancing

Connectivity issues (inside DB)

44

Consequences
of delivery
problems

Duplicates (send, lost ack, resend)

Potential log growth at DataShards

45

Delivery guarantees

• Each producer (DataShard) has its own 
producer_id

• Each log record from specific producer is identified 
by monotonic sequence number seq_no

• (producer_id, seq_no) pair allows to deduplicate
records and achieve exactly-once guarantee

46

Write session

YDB Tables

Log

…A2 An

Table data

DataShard A

Log

…B1 B2 Bn

Table data

DataShard B

…

…

Partition

Partition

Partition

A2

A1

Initialize session (producer_id)

Topic

47

Write session

YDB Tables

Log

… An

Table data

DataShard A

Log

…B1 B2 Bn

Table data

DataShard B

…

…

Partition

Partition

Partition

A1

A2

Session (last_seq_no)

Topic

48

Log growth 
prevention

DataShard controls size of its log

When the log size reaches the limit,
DataShard activates backpressure
mechanism (until the log gets
smaller)

Tablets normally restore availability
quickly, so backpressure is a last
resort

49

Transferring log 
to Topic

Log records routed by hash from
table’s primary key

For each row that is modified in a
YDB table, the log records appear in
the same Topic partition as the
actual modifications to the row

Exactly-once guarantee

Size of DataShard log 
is still reasonable

50

Topic

…

Partition

Partition

Partition

A1

A2

B2 …

…

…

B1

Consumer

Consumer

Replication controller

…

Replication from Topic

Consumer

Records

Replicated DB

DataShard

DataShard

DataShard

…

51

…

Partition

Partition

Partition

A1

A2

B2 …

…

…

B1

Consumer

Consumer

Replication controller

…

Replication from Topic

DataShard

Replicated DB

DataShard

DataShard

…

Consumer

Records

Data

Topic

52

Replication from
Topic

• Replication controller creates 
a consumer for each Topic
partition

• Consumer reads the partition log
and writes data to a set of
DataShards (primary key routing)

• Controller periodically receives
and remembers consumer’s
progress

1. Intro and Problem Statement

2. YDB Architecture in 5 minutes

3. An Approach to Asynchronous
Replication in YDB

4. Dealing with multiple logs

5. Distributed Transactions in YDB

6. Globally ordered log 
and consistency

54

Distributed
Transaction
Example

UPDATE table1 SET Value1=3845 WHERE Id=“GY045”

UPDATE table2 SET Data=Data+1 WHERE Key=346;

COMMIT;

Key Data

82 8921

283 827

346 654

1273 3445

ID Value1 Value2

GX008 8921 1114

GX278 827 9

GY045 654 345

SK720 3445 3456

SM527 7668 7643

UA628 72 3928

55

How to Implement
Distributed Transactions?
2PC (Two-phase Commit)

The most standard way to implement distributed transactions

Disadvantages: low throughput on high contention

YDB adapts Calvin protocol for distributed transaction processing

Calvin: Fast Distributed Transactions for Partitioned Database Systems by Daniel J. Abadi, Alexander
Thomson

Calvin allows nonblocking execution of deterministic transactions

Calvin itself is not enough to execute arbitrary transaction, so YDBs transaction processing is more than just
Calvin

56

What a Deterministic Transaction is?

read A 
read B 
write C = value(A) + value(B)

Deterministic transaction knows
it read/write set

57

What a Deterministic Transaction is?

Deterministic transaction knows
it read/write set

Not all transactions are deterministic.
Example of none-deterministic transaction

read A 
read B 
write C = value(A) + value(B)

read A

read value(A) 
read B 
write C = value(value(A)) + value(B)

58

How Calvin Executes Deterministic Transactions?

DataShard 1

DataShard 2

DataShard 3

Coordinator
Order (TxA, TxB, TxC, TxD)

TxA

TxA

TxB

TxB

TxC

TxC

TxC

TxD

TxD

Say, we have incoming transactions: TxA(DS1, DS2), TxB(DS1, DS3),
TxC(DS1, DS2, DS3), TxD(DS2,DS3). Calvin: If Coordinator arranges incoming
transactions, then there will be no conflicts and we will get serializable isolation

59

YDB’s Multiple Coordinators

TxA (DS1, DS2),

TxB (DS1, DS3),

TxC (DS1, DS2, DS3),

TxD (DS2, DS3)

10 ms quantum 10 ms quantum

TxA, TxB TxC

DataShard 1

Coordinator 1

Coordinator 2

DataShard 2

DataShard 3

10 ms quantum 10 ms quantum

TxA, TxD TxC

10 ms quantum 10 ms quantum

TxB, TxD TxC

10 ms quantum 10 ms quantum

TxA TxC

10 ms quantum 10 ms quantum

TxB, TxD

60

YDB’s Multiple Coordinators

TxA (DS1, DS2),

TxB (DS1, DS3),

TxC (DS1, DS2, DS3),

TxD (DS2, DS3)

10 ms quantum 10 ms quantum

TxA, TxB TxC

DataShard 1

Coordinator 1

Coordinator 2

DataShard 2

DataShard 3

10 ms quantum 10 ms quantum

TxA, TxD TxC

10 ms quantum 10 ms quantum

TxB, TxD TxC

10 ms quantum 10 ms quantum

TxA TxC

10 ms quantum 10 ms quantum

TxB, TxD

PlanStep — coordinator quantum 
TxId — unique id

1. Intro and Problem Statement

2. YDB Architecture in 5 minutes

3. An Approach to Asynchronous
Replication in YDB

4. Dealing with multiple logs

5. Distributed Transactions in YDB

6. Globally ordered log 
and consistency

62

How to write globally ordered log to Topic?

…

Partition

Partition

Partition

A1

B2

Source table

Log

B2

PlanStep1

DataShard B

Log

А1

DataShard А

Topic

63

…

Partition

Partition

Partition

A1

B2

…

Consumer

Consumer

Replication controller

…

Will it be consistent?

DataShard

Replicated DB

DataShard

DataShard

…

Consumer

Records

Data

Topic

64

How to achieve
consistency?

Client on replicated-side must be
sure that he has received all
records for a certain PlanStep

Therefore, the client needs to
know the list of DataShards
(producers) that write to the Topic

65

More about producers

Log

DataShard A

DataShard B
A3A1 A2

…B3B2B1

Producer_id of DataShard A

Producer_id of DataShard B

Table Topic partition

An…

66

More about
producers

The Topic partition log consists of
records of all its producers
(DataShards)

Producer has its own producer_id

Topic partition knows list of producers
at any moment of time

Split of producer

DataShard A

Table
Time

…

Topic partition

A1 A2

Producer_id: A

Split of producer

A3A1 A2

Producer_id: A

DataShard A

Table
Time

Producer_id: C

Producer_id: B

…

DataShard B DataShard C

A1 A2

Producer_id: A

Topic partition

A3A1 A2

Producer_id: A

Split of producer

DataShard A

DataShard B

Table
Time

DataShard C A3A1 A2 B2B1 …

Producer_id: C

Producer_id: B

…

Producer_id: A Producer_id: B

DataShard B DataShard C

A1 A2

Producer_id: A

Producer_id: C

Topic partition

70

List of
producers

The list of producers is known, kept 
up to date (during split or merge) 
and available to clients

This information helps to determine
whether all records for a certain
PlanStep have been received or not

71

Now it’s consistent

…

Partition

Partition

Partition

A1

B2

…

DataShard

Replicated DB

DataShard

DataShard

…

Data
…

Metadata

Commit

…

Consumer

Replication controller

Consumer

Consumer

Records

Topic

72

What if nothing has changed?

…

Partition

Partition

Partition

A1

B2

Source table

Log

B2

PlanStep1

DataShard B

Log

А1

DataShard А

А2 А3

B3
А2

PlanStep2 PlanStep3

А3

B3

Topic

73

What if nothing has changed?

DataShard

Replicated DB

DataShard

DataShard

…

Data

…

A1

B2

…

… Records

…

Consumer

Replication controller

Consumer

Consumer

A2

A3

B3

Partition

Partition

Partition

Topic

74

What if nothing has changed?

…

DataShard

Replicated DB

DataShard

DataShard

…

Consumer

Replication controller

Consumer

Records

Data

…

Partition

Partition

Partition

A1

B2

A2

A3

Metadata

Commit

B3

Consumer

…

…

Topic

75

Gaps in the log • Gaps do not allow to promote
edge of commited data

• We have to wait until changes
occur in the all DataShards

• Replication delays are increasing

76

If nothing has changed, just send something

…

Partition

Partition

Partition

A1

B2

Source table

Log

B2

PlanStep1

DataShard B

Log

А1

DataShard А

А2 А3

B2HB B3

B2HB

А3

B3А2

PlanStep2 PlanStep3

Topic

77

Sending
heartbeats

• DataShard should send records
every PlanStep: with data
(something happened), or
heartbeat (nothing has changed)

• Heartbeat can be sent to any
Topic partition

• Heartbeats help to promote edge
of commited data

78

Commited edge promotion using heartbeats

…

DataShard

Replicated DB

DataShard

DataShard

…

Consumer

Replication controller

Consumer

Records

Data

…

Partition

Partition

Partition

A1

B2

A2

A3

Metadata

Commit

B3

Consumer

…

…B2HB

Topic

79

Conclusion

Scalable 
multi-level log

Small log at DataShards

Large log at Topic partitions

Global consistency 
with adequate delays

Records sorted in global time
by PlanStep

Heartbeats help to get rid of
gaps in global time

Topic Partitions 
Split/Merge

Elastic topics

Automatically adjust number of
partitions like tables do

Available as a part of Change
Data Capture

Will be available in the next
major version

Next steps, contributions are
welcome

