
Senior software engineer, Yandex

Scale it easy: YDB's high 
performance in a nutshell

Evgenii Ivanov



About myself 2

• YDB developer

• Outside YDB I enjoy aerial 
photography, spending time 
with my family and reading



Costs of a wrong DB choice 3

• Customer's data loss

• Increased expenses

• Low performance

• Inability to scale



• Demonstrate the high availability and superior performance of 
distributed databases

• Illustrate scenarios where YDB is the optimal choice for your data 
management needs

• Delve into intriguing technical aspects underpinning YDB's high 
performance

4Goals of this talk



Open-Source Distributed SQL Database

• Relational DB (mainly OLTP, OLAP coming soon)

• Clusters with thousands of servers

• Apache 2.0 license

• Star ydb-platform on GitHub

5YDB

http://github.com/ydb-platform/ydb


YDB is …
Strictly consistent

• CAP-theorem – we choose CP
• Serializable transaction execution

6



YDB is …
Highly available and fault tolerant

• Multiple availability zones (AZ): automatic recovery
• YDB is read-write available even after losing AZ and a rack 

simultaneously

7



YDB is …
A mission critical database

• 365x24x7 (366x24x7 when needed)
• Zero maintenance window

8



What is performance? 9

• Throughput
• Latency

Usually at YDB we are 
focusing on achieving max 
possible throughput with 50 
ms latency limit on 99 
percentile



Performance has no goal, only path 10

• New hardware

• New algorithms

• New challenges and 
applications

• Never ending improvements



Performance saves money 11

• The better DB performance is –
the less hardware you need

• With the high availability and 
scalability you simply earn 
more



01

Performance tips and tricks 
for everybody



The source of tips is our path 13

• There are a lot of architectural 
decisions

• Some system configuration 
tweaks

• Anti bottlenecks campaign

• Lots of flamegraph sessions 
and experiments

571
710

1096 1116
1231

0

200

400

600

800

1000

1200

1400

Jan. 01 Feb. 01 Feb. 15 Mar. 06 Mar. 13

Throughput, KOp/s



Whoa, can we still process more? 14



Yes! CPU affinity
• No code changes – same binary

• Applicable to any multithreaded software and any DB

15



Yes! CPU affinity
• No code changes – same binary

• Applicable to any multithreaded software and any DB

• CPU caches are crucial for performance

• Important metric: instructions per cycle (IPC)

16



Yes! CPU affinity
• No code changes – same binary

• Applicable to any multithreaded software and any DB

• CPU caches are crucial for performance

• Important metric: instructions per cycle (IPC)

• We want to pin threads to a subset of cores

• Solution: CPU affinity (cpusets/tasksets)

• Throughput increases by 20-40% with same CPU 
consumption (proportionally to IPC)

17



Yes! CPU affinity 18

534

721
779

374
467

730
796

405

632

972

1081

486

593

905
1002

472

0

200

400

600

800

1000

1200

A B C D A B C D

Throughput, KOp/s

no taskset tasksetZipfian Uniform



Hugepages
• Cache misses are expensive

• TLB misses are even more expensive

19



Hugepages
• Cache misses are expensive

• TLB misses are even more expensive

• Solution: transparent hugepages

• +3% of free throughput 

20



Actor System
• Is a concurrency model

• Actor – the single threaded entity with own state

• Actors receive messages, send messages and create other 
actors

21



Latency bound antipattern 22

• QP – query processor

• KV – key-value storage

• QP and KV are single 
threaded

• Queries might be complex

• Push-down is a traditional 
approach

QP
KV

QP

QP

QP

QP

KV

KV



Latency bound antipattern 23

• Load distribution is uneven

• Pareto principle (the Zipfian 
distribution)

• Requests to KV are latency 
bound

QP
KV

QP

QP

QP

QP

KV

KV



Some compiler magic
• Profile-guided optimization (PGO): +20-30% of throughput

• BOLT: post-link binary optimizer: +3-5% of throughput

• Link time optimization (LTO): +1-3% of throughput

24



Architecture, platform and features
• Separate compute and storage layers

• Own storage layer directly on disks (talk)

• Own advanced actor system (talk)

• C++

• MVCC (talk) and other features

• Beyond Calvin

25

https://youtu.be/vIjFQHIeXio
https://youtu.be/bvfb4Mn4dXc
https://youtu.be/k2ccFXWdBN4


02

YCSB: key-value performance



Yahoo! Cloud Serving Benchmark 
(YCSB)
• A popular key-value benchmark

• Created for NoSQL key-value DBs, but still loved by everybody 

• Supports almost all modern databases

• It’s hard to do distributed transactions well if you can’t do key-
value workloads well

27



YCSB workloads
• A (update heavy workload): 50% reads and 50% updates

• B (read mostly workload): 95% reads and 5% updates

• C (read only)

• D (read latest workload): 95% reads, 5% inserts

• F (read-modify-write): 50% reads and 50% read-update 
operations

• E (short ranges): 95% scans and 5% inserts.

28



Test setup
• 128 cores: 2x32-cores Intel Xeon Gold 6338 CPU @ 2.00GHz 

with hyper-threading turned on

• 4xNVMe

• 512 GB RAM

• 50 Gb network

• Transparent hugepages turned on

• Ubuntu 20.04.3 LTS

29



Distributed SQL Databases 30



A bar fight? 31



Like this? 32



33



YCSB: 300 GB data 34

35,3

207,1

427,8

207,6

3,6 15,6

364,8
316 317,2

227

27,6

240,5

328,9

467,4

559,6

323,6

1,3

276,4

0

100

200

300

400

500

600

A
(update heavy)

B
(read monstly)

C
(read only)

D
(read latest)

E
(short ranges)

F
(read-modify-write)

Throughput, KOp/s (higher is better)

CockroachDB YugabyteDB YDB



YCSB: 2 TB data 35

34,7

263,1

400,2

207

3,6 2027,3

269,5 272,6 266,3

41 27

341,4

447,8

513,2

292,8

1,3

228,2

0

100

200

300

400

500

600

A
(update heavy)

B
(read monstly)

C
(read only)

D
(read latest)

E
(short ranges)

F
(read-modify-write)

Throughput, KOp/s (higher is better)

CockroachDB YugabyteDB YDB



YCSB: 2 TB data 36

105

36

8
16

1544

134

11 12 17

124

11 7,6
5

18
11

1

10

100

1000

10000

A
(update heavy)

B
(read monstly)

C
(read only)

D
(read latest)

F
(read-modify-write)

Latency, ms (lower is better)

CockroachDB YugabyteDB YDB



A silver bullet? 37



Analyses
• UPSERT vs. UPDATE: blind write VS. read-modify transaction

• CockroachDB uses UPDATE in workloads A, B and F

38

34,7

263,1

400,2

207

3,6 2027,3

269,5 272,6 266,3

41 27

341,4

447,8
513,2

292,8

1,3

228,2

0

100

200

300

400

500

600

A (update heavy) B (read monstly) C (read only) D (read latest) E (short ranges) F (read-modify-write)

Throughput, KOp/s (higher is better)

CockroachDB YugabyteDB YDB



Analyses
• YugabyteDB has a bare metal horizontal scaling issue

• YugabyteDB has a vertical scaling issue

39

34,7

263,1

400,2

207

3,6 2027,3

269,5 272,6 266,3

41 27

341,4

447,8
513,2

292,8

1,3

228,2

0

100

200

300

400

500

600

A (update heavy) B (read monstly) C (read only) D (read latest) E (short ranges) F (read-modify-write)

Throughput, KOp/s (higher is better)

CockroachDB YugabyteDB YDB



Analyses
• Workload C is the same among all DBs

• YDB has an issue with short ranges (workload E)

40

34,7

263,1

400,2

207

3,6 2027,3

269,5 272,6 266,3

41 27

341,4

447,8
513,2

292,8

1,3

228,2

0

100

200

300

400

500

600

A (update heavy) B (read monstly) C (read only) D (read latest) E (short ranges) F (read-modify-write)

Throughput, KOp/s (higher is better)

CockroachDB YugabyteDB YDB



YCSB conclusion
• Be careful when you implement your application

• YDB outperforms others in many YCSB workloads

• In write intensive workloads all 3 DBs exhibited decent 
performance

• We strongly recommend YDB for read-mostly and read-only 
workloads

Full YCSB results: https://bit.ly/3WfMZEq

41

https://bit.ly/3WfMZEq


03

Distributed SQL vs 
“Centralized” SQL



Other DBs to compare with? 43



Ask your DB a question
• What will happen if a disk/server/datacenter fails?

• How can I reduce the latency if users are far from their DC?

• What latency will I have when working set exceeds RAM 
(typically 512 GiB, rarely above 1024 GiB)?

44



Big data questions to DB
• Can you store a petabyte of data?

• Can you handle more than 100 GB/s of data updates?

45



46

“The best theory is inspired by 
practice. The best practice is 
inspired by theory.”

Donald Knuth

• There are theoretical reasons 
behind the advantages of a 
distributed DB 

• Distributed DB theory is based on 
the best practice



What do we expect from DBs?
• ACID – of course!

• Scalability

• Maintainability

• High performance

• Security

• Reliability / fault tolerance / availability

47



Nothing is reliable
• Software bugs

• Hardware bugs

• Hardware faults

• Unreliable networks

Can a single server DB be reliable and available? No.

48



Nothing is reliable 49



Is replication a solution? 50



Replication pitfalls
Async replication:

• risk of data loss (not durable)

• stale reads and anomalies

Avoid async replication until you know what you’re doing!

51



Sync replication pitfalls
Sync replication is better, but still there is one single leader:

• only reads can be split among replicas

• load balancer (like HAProxy)

• failover and failback (like Patroni)

• failover requires consensus: etcd, ZooKeeper, etc

• when failed node is back, recovery might take a long time

52



Vertical and horizontal scaling 53

IBM z16 mainframe A small part of typical YDB cluster



Sharding
• Horizontal scaling

• Geographical scaling

• Many leader shards (partitions/tablets)

54



Sharding pitfalls
• Consistency – distributed snapshots – complicated!

• You need a coordinator like Citus as well as standby and failover 
procedure for the coordinator

55



The choice 56

Do you really want to 
maintain a DB with a separate

• load balancer

• consensus cluster

• failover and failback

• coordinator



Conclusion



Conclusions
• There are ways to ruin performance on the application level

58



Conclusions
• There are ways to ruin performance on the application level

• ”Centralized” SQL doesn’t match mission critical data

• Distributed DB is the proper solution for availability and scaling challenges

59



Conclusions
• There are ways to ruin performance on the application level

• ”Centralized” SQL doesn’t match mission critical data

• Distributed DB is the proper solution for availability and scaling challenges

• There are scenarios, where YDB outperforms other distributed DBs

• You might want to consider YDB when choosing distributed DB for your data

60



Please leave 
your feedback

Evgenii Ivanov (tg, twitter, linkedin: @eivanov89)

Senior software developer, Yandex

Slides: bit.ly/3XufHlr

Yandex on 
the conference


