
YDB Release
v23.1

2

Release 23.1 Webinar

1

What's new in YDB v23.1

• 3 new features

• 5 performance improvements

• 5 issues fixed

2

Q&A session

Upgrade instructions: https://ydb.tech/en/docs/administration/upgrade

https://ydb.tech/en/docs/administration/upgrade​

3

Initial table scan on CDC

changefeed creation
By Ilnaz Nizametdinov

• By default CDC sends only new changes

• There are scenarios when changes need

to be applied on top of the current (initial) state

• Initial table scan solves the problem of

obtaining the initial state

4

How CDC works

YDB Topic

Transactions Write

changefeed

Read

changefeed

Data

Changefeed

YDB Table

Asynchronous

Synchronous

5

• Enable CDC

Add changefeed

• Fill replica

with initial data

SELECT

ReadTable

Using a backup

• Apply changefeed

Replication

using CDC

6

Problems

• Switching between

different ways of

working with data

• It is difficult to apply

changefeed on top

of the initial state

Changefeed

Initial data

7

How CDC Initial Scan works

YDB Topic

Transactions

Asynchronous

Synchronous

Data

Changefeed

YDB Table

Write

data from

snapshot Read

initial data and

changefeedWrite

changefeed

Data snapshot

8

Enable CDC

(add changefeed)

with option

INITIAL_SCAN = TRUE

Apply changefeed

• Includes initial data

• Order guarantee: initial state of the

row will arrive first, and changes

will come after it

Replication using

CDC Initial Scan

9

Audit log

The audit log empowers users

• Monitor system interactions

• Detect unauthorized activities

• Assist in incident investigations

By Andrei Rykov

Based on the configuration settings, YDB

has the capability to direct audit log data to

• The standard error output (stderr)

• An individual file located on each node within

the YDB cluster

The audit log is a specialized tool

for monitoring key actions and events

within the YDB product

10

Audit log

In this update, logging of changes to YDB schema

objects was added: databases, directories, tables,

topics. Additionally, it logs changes in the number

of partitions, backup and restore operations,

as well as modifications to access and more

An audit log record includes

• Date and time of the event

• The user/account that initiated the operation

• Description of operations on YDB objects

• The result of the request

2023-03-13T19:59:27.614731Z:

{

"tx_id":"562949953426315",

"subject":"user",

"remote_address":"ipv6:[xxxx:xxx:xxx:xxx:x:xxxx:xxx:xxxx]:xxxxx",

"component":"schemeshard",

"operation":"CREATE TABLE",

"paths":"[/my_dir/db1/my_table]",

"database":"/my_dir/db1",

"status":"SUCCESS",

"detailed_status":"StatusAccepted"

}

By Andrei Rykov

11

Automatic actor system pools

configuration

Main changes

Dynamic change of number of threads

in a pool depending on system load

Once a second the system checks load and either

gives or takes away a thread

The number of CPUs used is less than or equal to

the number allocated to the process

Simplified actor system configuration

You can now show only node kind and total

number of cores for the process

By default it'll take the total number of available

cores (affinity/physical)

By Aleksander Kryukov

12

Automatic actor system pools

configuration

Dynamic change of number

of threads in a pool depending

on system load
Once a second the system checks load and either

gives or takes away a thread

The number of CPUs used is less than or equal to

the number allocated to the process

AfterBefore

13

Automatic actor system pools

configuration

Before After

Simplified actor system

configuration
You can now specify only node kind and total

number of cores for the process

By default it'll take the total number of available

cores (affinity/physical)

actor_system_config:
 executor:
 - name: System
 spin_threshold: 0
 threads: 2
 type: BASIC
 - name: User
 spin_threshold: 0
 threads: 3
 type: BASIC
 - name: Batch
 spin_threshold: 0
 threads: 2
 type: BASIC
 - name: IO
 threads: 1
 time_per_mailbox_micro_secs: 100
 type: IO
 - name: IC
 spin_threshold: 10
 threads: 1
 time_per_mailbox_micro_secs: 100
 type: BASIC
scheduler:
 progress_threshold: 10000
 resolution: 256
 spin_threshold: 0

actor_system_config
 use_auto_config: true
 cpu_count: 9
 node_type: COMPUTE

14

Improved data transfer formats between query

execution stages. Before

DECLARE $lines as List<Struct<id:UInt64,value:Utf8>>;

UPSERT INTO `table` SELECT * FROM AS_TABLE($lines);

Client
SDK

gRPC
Layer

QP
Proxy

QP
Session

QP
Compile

QP
Session

Literal
Exec

QP
Exec

QP
Session

QP
Session

QP
Proxy

gRPC
Layer

Client
SDK

Public API

Protobuf Internal Proto Internal Proto

Internal ProtoInternal Proto

Timeout Timer

Internal ProtoInternal ProtoInternalProtoPublic API

Proto

Idle Timer

Compile Timer

Internal Proto

Timeout Timer

Internal Proto Internal Proto

By Vitalii Gridnev

15

Improved data transfer formats between query

execution stages. After

DECLARE $lines as List<Struct<id:UInt64,value:Utf8>>;

UPSERT INTO `table` SELECT * FROM AS_TABLE($lines);

Client
SDK

gRPC
Layer

QP
Proxy

QP
Session

QP
Compile

QP
Session

Public API

Protobuf

Public API Proto

+ RPC Ctx

Computation

Formats

Computation

Formats

Computation

Formats

Computation

Formats

Public API

Proto

Public API

Proto

Public API

Proto

Timeout Timer

Public API Proto

+ RPC Ctx

Internal Proto

By Vitalii Gridnev

Internal Proto

Internal Proto

Internal Proto

Internal Proto

Timeout Timer

Internal ProtoInternal ProtoInternalProto

Idle Timer

Compile Timer

Internal Proto

Timeout Timer

Internal Proto

Literal
Exec

QP
Exec

QP
Session

QP
Session

QP
Proxy

gRPC
Layer

Client
SDK

16

Improved data transfer formats between query

execution stages

Improved interprocess

data formats

in Query Processing

Avoid Protocol Buffers as much as possible

and use data formats which are native

for computation

Actor system

usage refactoring

Literal execution is now inlined into session

(to avoid heavy thread wakeup)

Session idle timers are refactored, removed

duplication of query timeout timers

RPC context passthrough, avoid useless

copies of protocol buffers

By Vitalii Gridnev

17

Improved data transfer formats between query

execution stages

500M

450M

400M

350M

300M

250M

200M

150M

100M

50M

0

CPU Cores

Time

Release

18

Computation graph caching

Each query goes through

an execution stage

Overall path:

1. Query compilation

2. Building computation graph pattern

3. Execution of computation graph

In OLTP scenario the first two stages

can easily be more expensive than the third.

The obvious solution is to cache them

YDB had query compilation cache

for a while now, and in 23.1 there‘s

a new cache for the second stage —

computation graph patterns

On a cache hit the pattern is cloned,

enriched with temporary values

and it is ready for execution

By Vlad Kuznetsov

19

Computation

graph caching

Query request

Compilation

Create computation pattern

Compiled query

Execute

Reply to client

Clone computation pattern

Execute computation pattern

Compile cache

Computation pattern cache

20

Computation graph caching

Release

CPU Cores

21

Atomic secondary index

replacement

• In production environment you may

need to change a secondary index, but without

modification of application working with the table

• The most common case — adding

COVER columns

• To make this possible atomic secondary index

replace feature was added

• When replace happens, compiled queries

are invalidated and their re-compilation

starts using the new one

• To replace an index you need to:

1. Prepare an index with a new name

2. Replace index via CLI (or SDK)

Example

ydb table index rename goods --index-name price_index_new --
to price_index --replace

By Daniil Cherednik

22

Secondary indices overview

There are

two query

types

Use of secondary indices in Data Query

SELECT Column1, Column2 FROM Table VIEW SecondaryIndex WHERE Fk = 'SomeValue'

Data Query
OLTP transations

Scan Query
Analytical ad-hoc queries

By Yulia Sidorina

23

Secondary indices in scan

queries

Source stage

StreamLookupActor

Target stage

DataShards

Lookup keys

Result rows

Lookup

• When main table retrieval is not

needed (only index or cover

columns are used) not much

changes were needed, we just

work with the index table

• Otherwise it works via

a new StreamLookupActor

By Yulia Sidorina

Enable EnableKqpScanQueryStreamLookup flag in your YDB
configuration

Improved predicate

pushdown for

table reads

By Mikhail Surin

Made possible to use dynamic

read ranges

DECLARE $Shard1 AS Uint32;

DECLARE $Shard2 AS Uint32;

SELECT *

FROM `/eu/ugc/prod/ugcdb/data`

where ShardId = $Shard1 or ShardId = $Shard2;

Improved predicate

pushdown for

table reads

By Mikhail Surin

Possible

workaround

DECLARE $Shard1 AS Uint32;

DECLARE $Shard2 AS Uint32;

SELECT *

FROM `/eu/ugc/prod/ugcdb/data` where ShardId = $Shard1

UNION ALL

SELECT *

FROM `/eu/ugc/prod/ugcdb/data` where ShardId = $Shard2

26

Improved predicate

pushdown

for table reads

Precompute stage

in 23-1

By Mikhail Surin

DECLARE $Shard1 AS Uint32;

DECLARE $Shard2 AS Uint32;

SELECT *

FROM `/eu/ugc/prod/ugcdb/data`

where ShardId = $Shard1 OR ShardId = $Shard2

Join YDB

community

t.me/ydb_ru clck.ru/rdFQw

Star YDB

on GitHub

https://t.me/YDB_RU
https://clck.ru/rdFQw

	Слайд 1, YDB Release v23.1
	Слайд 2, Release 23.1 Webinar
	Слайд 3, Initial table scan on CDC changefeed creation
	Слайд 4, How CDC works
	Слайд 5, Replication using CDC
	Слайд 6, Problems
	Слайд 7, How CDC Initial Scan works
	Слайд 8, Replication using CDC Initial Scan
	Слайд 9, Audit log
	Слайд 10, Audit log
	Слайд 11, Automatic actor system pools configuration
	Слайд 12, Automatic actor system pools configuration
	Слайд 13, Automatic actor system pools configuration
	Слайд 14, Improved data transfer formats between query execution stages. Before
	Слайд 15, Improved data transfer formats between query execution stages. After
	Слайд 16, Improved data transfer formats between query execution stages
	Слайд 17, Improved data transfer formats between query execution stages
	Слайд 18, Computation graph caching
	Слайд 19, Computation graph caching
	Слайд 20, Computation graph caching
	Слайд 21, Atomic secondary index replacement
	Слайд 22, Secondary indices overview
	Слайд 23, Secondary indices in scan queries
	Слайд 24, Improved predicate pushdown for table reads
	Слайд 25, Improved predicate pushdown for table reads
	Слайд 26, Improved predicate pushdown for table reads
	Слайд 28, Join YDB community

