
YDB:
extending a Distributed SQL 
DBMS with PostgreSQL 
compatibility

Ivan Blinkov
VP, Product and Open-Source



2

Ivan Blinkov

• Over a decade of experience specifically
in database management systems (DBMS)

• Talked with countless DBMS users
and stakeholders to understand how and 
why they ended up with a specific solution

• Worked on a handful of DBMS products, 
including two open-source ones:
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Approaches to making
a DBMS PostgreSQL-
compatible

Why YDB needs 
PostgreSQL compatibility?

YDB’s approach
and lessons learned

Agenda



Why YDB needs
PostgreSQL compatibility?
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Mission critical Highly available Data platform

• Survives AZ plus rack 
failure without human 
intervention

• Seamless upgrades 
• Self-healing
• Smart SDKs

• Designed for services 
with 24×7 uptime 
requirements

• Serializable consistency
• Adapts to workloads
• Security features

• Tables
• Topics (persistent queues)
• Analytics
• Federated queries
• Multitenancy

YDB: Open-Source Distributed SQL 
Database
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• Finance
• E-commerce
• Ride-hailing
• Advertisement
• Logistics
• AI services

Typical YDB
use cases
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Transactional 
workloads (OLTP) 

Analytical workloads 
(OLAP)

Streaming workloads 
(persistent queues)

• Real-time reporting
• Data warehousing
• AI features

• Millions of transactions 
per second

• Two SQL dialects: YQL 
and PostgreSQL-
compatible

• Exactly once or at least 
once

• gRPC API or Kafka-
compatible API

What can be built with YDB?
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2014 Started as an in-house infrastructure technology

2020 Provided as a managed cloud service

2022 Published to open-source under Apache 2.0 license

2023 Started working on PostgreSQL compatibility

2024 Added PostgreSQL compatibility

Summary of YDB history 
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1 2 3
Reuse YDB’s distributed 
query engine for:

• High availability
• Strong consistency
• Scalability limited

by budget

Allow to reuse existing 
PostgreSQL open-source 
toolset and ecosystem

Interoperability between YDB 
and PostgreSQL layers

YDB’s PostgreSQL compatibility goals



Possible approaches
to making a database 
technology PostgreSQL-
compatible
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How most SQL DBMS process queries?
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Legend

Function calls
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Implement everything from scratch
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Advantages Disadvantages

Design implementation
for distributed environment

Hard to mimic all corner cases

Freedom to optimize algorithms A lot of work to reimplement all 
current and future features

Implement everything from scratch
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Use full PostgreSQL runtime
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Advantages Disadvantages

Best runtime compatibility Need to main a PostgreSQL fork

Relatively easy PostgreSQL
release upgrade

Limited by original runtime 
capabilities

Partial extension support

Use full PostgreSQL runtime



Write a PostgreSQL extension

Client Wire protocol SQL parser
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Write a PostgreSQL extension

Advantages Disadvantages

Uses native extension API Limited extension points

Easy PostgreSQL release 
upgrades

Limited by PostgreSQL runtime 
capabilities
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YDB’s approach
and lessons learned
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YDB’s approach: best of both worlds
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YDB’s approach: best of both worlds

Advantages Disadvantages

Keep YDB’s key properties A lot of work for the integration

High level of PostgreSQL 
compatibility due to code reuse

Moderate complexity of 
PostgreSQL release upgrades

Interoperability between 
PostgreSQL and YDB
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1. Every SQL implementation is different

2. Only PostgreSQL is 100% compatible 
with PostgreSQL

3. Settle on goals and trade-off 
expectations early

4. Testing compatibility and its coverage 
is crucial:

• PostgreSQL regression tests
• Documentation based tests
• Drivers integration tests
• Real applications

Lessons learned
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YDB is 100% open-source

Permissive Apache 2.0 License for:

• Core platform is built from scratch in C++
• SDKs in Java, Python, Go, Rust, Node.js, PHP, etc.
• Documentation in Markdown

Contributors are welcome!
https://github.com/
ydb-platform/ydb

https://github.com/ydb-platform/ydb
https://github.com/ydb-platform/ydb


Thank you!
https://ydb.tech

YDB highlights:

• Strong consistency
• Resilience and self-healing
• Elastic scalability

• PostgreSQL compatibility
• Various workloads
• 100% open-source under Apache 2.0

https://ydb.tech/

