
YDB:
extending a Distributed SQL 
DBMS with PostgreSQL 
compatibility

Ivan Blinkov
VP, Product and Open-Source



2

Ivan Blinkov

• Over a decade of experience specifically
in database management systems (DBMS)

• Talked with countless DBMS users
and stakeholders to understand how and 
why they ended up with a specific solution

• Worked on a handful of DBMS products, 
including two open-source ones:



3

1 2 3
Approaches to making
a DBMS PostgreSQL-
compatible

Why YDB needs 
PostgreSQL compatibility?

YDB’s approach
and lessons learned

Agenda



Why YDB needs
PostgreSQL compatibility?

4



5

Mission critical Highly available Data platform

• Survives AZ plus rack 
failure without human 
intervention

• Seamless upgrades 
• Self-healing
• Smart SDKs

• Designed for services 
with 24×7 uptime 
requirements

• Serializable consistency
• Adapts to workloads
• Security features

• Tables
• Topics (persistent queues)
• Analytics
• Federated queries
• Multitenancy

YDB: Open-Source Distributed SQL 
Database



6

• Finance
• E-commerce
• Ride-hailing
• Advertisement
• Logistics
• AI services

Typical YDB
use cases



7

Transactional 
workloads (OLTP) 

Analytical workloads 
(OLAP)

Streaming workloads 
(persistent queues)

• Real-time reporting
• Data warehousing
• AI features

• Millions of transactions 
per second

• Two SQL dialects: YQL 
and PostgreSQL-
compatible

• Exactly once or at least 
once

• gRPC API or Kafka-
compatible API

What can be built with YDB?



8

2014 Started as an in-house infrastructure technology

2020 Provided as a managed cloud service

2022 Published to open-source under Apache 2.0 license

2023 Started working on PostgreSQL compatibility

2024 Added PostgreSQL compatibility

Summary of YDB history 



9

1 2 3
Reuse YDB’s distributed 
query engine for:

• High availability
• Strong consistency
• Scalability limited

by budget

Allow to reuse existing 
PostgreSQL open-source 
toolset and ecosystem

Interoperability between YDB 
and PostgreSQL layers

YDB’s PostgreSQL compatibility goals



Possible approaches
to making a database 
technology PostgreSQL-
compatible

10



How most SQL DBMS process queries?

Client Wire protocol SQL parser

Data typesExecution

Optimizer

Functions

Storage

N
et

w
or

k

11

Legend

Function calls

Data path



Implement everything from scratch

Client Wire protocol SQL parser

Data typesExecution

Optimizer

Functions

Storage

N
et

w
or

k

Legend

Implement yourself

Take from PostgreSQL

12



Advantages Disadvantages

Design implementation
for distributed environment

Hard to mimic all corner cases

Freedom to optimize algorithms A lot of work to reimplement all 
current and future features

Implement everything from scratch

13



Use full PostgreSQL runtime

Client Wire protocol SQL parser

Data typesExecution

Optimizer

Functions

Storage

N
et

w
or

k

Legend

Implement yourself

Take from PostgreSQL

14



15

Advantages Disadvantages

Best runtime compatibility Need to main a PostgreSQL fork

Relatively easy PostgreSQL
release upgrade

Limited by original runtime 
capabilities

Partial extension support

Use full PostgreSQL runtime



Write a PostgreSQL extension

Client Wire protocol SQL parser

Data typesExecution

Optimizer

Functions

Storage

N
et

w
or

k
Extension

Legend

Implement yourself

Take from PostgreSQL

16



Write a PostgreSQL extension

Advantages Disadvantages

Uses native extension API Limited extension points

Easy PostgreSQL release 
upgrades

Limited by PostgreSQL runtime 
capabilities

17



YDB’s approach
and lessons learned

18



YDB’s approach: best of both worlds

Client Wire protocol SQL parser

Data typesExecution

Optimizer

Functions

Storage

N
et

w
or

k

Legend

Implement yourself

Take from PostgreSQL

19



YDB’s approach: best of both worlds

Advantages Disadvantages

Keep YDB’s key properties A lot of work for the integration

High level of PostgreSQL 
compatibility due to code reuse

Moderate complexity of 
PostgreSQL release upgrades

Interoperability between 
PostgreSQL and YDB

20



21

1. Every SQL implementation is different

2. Only PostgreSQL is 100% compatible 
with PostgreSQL

3. Settle on goals and trade-off 
expectations early

4. Testing compatibility and its coverage 
is crucial:

• PostgreSQL regression tests
• Documentation based tests
• Drivers integration tests
• Real applications

Lessons learned



22

YDB is 100% open-source

Permissive Apache 2.0 License for:

• Core platform is built from scratch in C++
• SDKs in Java, Python, Go, Rust, Node.js, PHP, etc.
• Documentation in Markdown

Contributors are welcome!
https://github.com/
ydb-platform/ydb

https://github.com/ydb-platform/ydb
https://github.com/ydb-platform/ydb


Thank you!
https://ydb.tech

YDB highlights:

• Strong consistency
• Resilience and self-healing
• Elastic scalability

• PostgreSQL compatibility
• Various workloads
• 100% open-source under Apache 2.0

https://ydb.tech/

