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Yandex consists of over 90 services,
used by millions of people daily
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Browser

Most popular non-
native browser
in Russia

Search

Leading search
engine in Russia

OO

Taxi

Leading ride-hailing operator
in Russia with presence in
other CIS and EMEA markets’

00U

Drive

Car-sharing
service

¢ G

Direct

Leading ad service
for placing
contextual ads

in Russia

)

Scooter

Electric scooter
rental service

Auto.ru, Yandex Realty, Yandex Rent and Yandex Travel
Leading online classifieds in the auto, real estate and travel verticals
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Maps and
Navigation
Leading map and
navigation app in
Russia and CIS

wv

Market

A multi-category
marketplace

Kinopoisk
Leading video

streaming platform in
Russia
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Cloud, Yandex 3603

Full-fledged cloud

platform for B2B and B2C

., BREEBBAEA

Omwao
DEL]

Lavka, Deli

Hyperlocal e-grocery
delivery service

Ot

Music, Bookmate

Leading music
streaming service

in Russia; E-book and
audiobook service

00

Devices & Alice

A line of smart speakers
and TV with an Al voice

Q@

Eats & Market Delivery?
Delivery of ready-to-eat food
from restaurants and various
goods from offline stores

T

Plus

Leading subscription program
in Russia combining all key

Yandex services via cashbacks
and benefits for users

@

Practicum

The beginner-friendly online
coding bootcamyps with the

&
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=

Delivery

Delivery solution
for consumers
and businesses

Fintech

Retail lending focused
digital financial services

P\

SDG

Self-driving vehicles
and autonomous



Yandex builds a lot of its infrastructure in-house
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25700+

employees

Information Computer
search Vision
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Neural
language
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Simultaneous .
translation of Self-driving Cloud Speech
Al-based vehicles technologies technologies
videos
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Routing

and navigation
technologies

Crowdsourcing
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Weather
forecasting
technology
Meteum 2.0



Part1
YDB: dealing
with Big Data
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What is YDB?

Distributed SQL database for
operational and analytical workloads
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Horizontal scaling
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ACID transactions in multiple AZ
MR RITACIDE S

Operability and automatic recovery
In case of failures
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Scaling by millions of transactions
per second and petabytes of data

A R B AN EFMPBR IR

Open-Source with Apache 2.0 license
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https://github.com/ydb-platform/ydb
https://ydb.tech/zh

YDB: made In YandeXx

2014 2017 2022 2024

First commit Base for Open-Source 35000+ nodes
Yandex Cloud github.com 5000+ databases

70+ PB storage
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Shared Nothing

© BANNET THZAIERNY

* Cluster of bare metal or virtual

machines @ @ @ @ @ @ {:}
- Shared nothing architecture {l:::l} {l:l} 5@5 5@5 @} @} {3
- Commodity hardware @ @ @ @

» Cluster both stores the data
and process user queries
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Compute un Storage separation
ITTEMFET R E

Compute nodes

Compute and storage g A
nodes are managed
iIndependently
Tablet Tablet Tablet Tablet
Tablet Tablet Tablet Tablet
- Tablet Tablet Tablet Tablet
- Scalability
- Cost-efficiency N o
o Storage nodes
»  Flexibility
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Table Partitions Autosplit and Balancing

MIERE DS, BT

- Split by load
- Split by size

* YDB evenly distributes
table partitions among
the nodes




Mirror-3-dc

3

avallabllity zones

X3

storage factor
copes with the loss of one AZ + (

one server rack in any other AZ Server |
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Block-4-2

Erasure-encoding, Reed-Solomon

1 AZ1

Rack 1 Rack 2 Rack 3 Rack 4 Rack 5 Rack 6 Rack 7 Rack 8
availability zone N = -
J |
storage factor |
copes with the loss — I_ _______ -
of 1 server racks of 8 ( Server | “Block-4-2" E‘ﬁﬁ&ﬁ']’l‘i_t
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) Market

Shopping cart and checkout uses YDB

100x 99,99%

Hundredfold load Strict response time
spikes guarantees
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OLTP

Workload



D€ Metrika

>1.5 min >1 PB

Transactions per second Data

OLAP Among the largest

Workload Web and mobile analytics platform in the world

Yandex Metrikag R L KM BB ST EEZ2—



It can recognize speech,
hold a conversation, answer
qguestions, and much more

Alice users per month

Requests to the voice
Assistant per monthe

AliceR1EE Ej]?*ﬂ%n

o Devices

Russia's widest range of devices
models with a virtual assistant.
We hold a 90% share of the smart

speaker market

Lite Mini with
Basic digital watch
level Compact

ERBESERSE

Midi

Compact
with powerful
sound

5 countries

Where to buy
Devices with Alice

Station 2

Middle
segment

96 million

Total number of Yandex
Stations sold since the

end of 2018

Max with
Zigbee
With 3-way
speakers

Duo Max
With a display

3.2 million

Active devices with
Yandex TV per month

Smart TV
Has all the

features of a
smart speaker



Part 2
YDB: moving
towards Al
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Retrieval Augmented Generation
NI E Y

What can
| see In Paris?

+

Chat

History

Enhanced

Prompt

Embedding
model

Augmented
Prompt

LLM

What Is the
cinema poster
In Paris
tomorrow?

A

v

Embedding

Similarity search

|

Relevant

facts
\/—

Lookup docs

>

Vector IDs

What Is the
cinema poster In
Paris tomorrow?

+
Exact cinema
poster records
for tomorrow
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YDB intrinsic advantages: logical layer
YDB EHLH: ZBEE

» Data fragmentation « Zero copy
« Data copy * No storage overhead
« Data divergence « Data consistency

ETL -
RDMS Vector DB YDB Vector capabilities
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YDB intrinsic advantages: infrastructure layer
YDBEBE: - EMiitEE

Scale Production readiness
( Sharding M Replication ) ( Fault-tolerance J [ Rolling update ]

[ Multitenancy ][ Spiky workload ] [ Persistence ][ Consistency ]

[ Cross-datacenter ] (Alerting M Support )[ Monitoring ]

( Herculean tasks )

18



Vector search in modern databases
MG EIEZEN O ==

Il

Database Release of

vector search
Lucene 2021
OpenSearch 2022
Redis 5027
Cassandra 2023
Clickhouse 2023
MongoDB 2023
Oracle 5023

MariaDB 5023
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YDB as a Platform

: Distributed storage | |

ACID transactions

: OLAP-tables

OLTP-tables

: Unified query language

: Federated queries

i Topics

~\

J

[ Key-Value ] Vector search
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Vector search use cases
mEERFERANS

search of user facts search of all facts
User has tiny amount of facts World cinema poster
He has 3 children Private organization has billions
Dog name is Bella of its confidential facts

Vector search can afford scan all the user facts Vector search can’t use brute force scan
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Exact methods
raTAiE =

* Linear search (brute force)

» Space partitioning

Methods of vector search

Approximation methods

iﬁ

=

Random Projections

» Locality sensitive hashing

 Faiss

- Hierarchical Navigable Small World

22



YDB: Exact
method
of vector

search
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Create table

CREATE TABLE facts (

1d Uinto4,

text String,

user 1d Uintod4,

vector

PRIMARY KI

Bytes,

Y (1d)
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Brute force

WHERE user 1d = 1

SELECT 1d, text FROM facts

ORDER BY CosineDistance (vector, STargetVector)

LIMIT 10

25



YDB:
approximation
methods
of vector

search
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Benchmarks

10+

methods

30+

libraries

10+

data sets

https://github.com/erikbern/ann-benchmarks

Queries per second (1/s)

104 1

107 1

102 1

101 1

Recall-Queries per second (1/s) tradeoff - up and to the right is better

101
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1-1071
Recall

1-10"4

1-10"2

NGT-qg
== hnsw(nmslib)
== gsgngt
== NGT-panng
glass
scann
== vearch
=== vamanaldiskann)
Milvus(Knowhere)
== pynndescent
wil= nz
faiss-ivipgfs
== hnswi(faiss)
={0= hnswlib
== hnsw(vespa)
wfe= redisearch
== vald(NGT-anng)
luceneknn
== weaviate
wef= SW-graph(nmslib)
== faiss-ivf
== flann
== mrpt
annoy
== gdrant
== puffinn
mef== ngvector
== tinyknn
=== BallTree(nmslib)
== bruteforce-blas

27



3 popular methods

Annoy Faiss HNSW
Type Random Inverted index Graph
projections
Used by Clickhouse *  PostgreSQL » Clickhouse
» Oracle *  PostgreSQL

» Oracle

* MongoDB Atlas

* Redis Stack

* Lucene
» ElasticSearch
* OpenSearch
- Cassandra

28



YDB:
Random
Projections
method
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Random Projections

Partition the space by N
random hyperplanes

How to choose hyperplanes?

- Take a pair of random points
from the dataset

- Take a hyperplane separating
these two points, orthogonal
to the vector between them

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html 30



Split again recursively

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html

31



https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html
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Random projection search

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html
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Random projection encoding

hyperplane — bitmask
(of N bits)

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html

34



Random projection encoding

o [ele
o [o]e
o [ele

(®[o]e e

sorted list of vector IDs

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html 35



Random projections scheme

CR.

AT

. TABLL

H, VEeCTLOors

1d Uinto4,

text String,

vector Bytes,

PRIMARY KEY

(1d)

(

K\\\\\\\\\\\\\\\\ ids Bytes,

CREATE TABLE polygons (
bits Bytes,

PRIMARY KEY (bits)

// bit set
// packed Sorted List
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Random projections search

// approximate search for polygon

Sapproximate ids = (

SELECT 1ds FROM polygons WHER

L]

bits = $TargetBits

// exact vectors search in the polygon

SELECT 1d, text FROM wvectors

WHERE 1d IN Sapproximate ids

ORDER BY CosineDistance (vector, $TargetVector)

LIMIT 10

37



Random projection search

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html
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Recall problem

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html
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Solution:
forest of trees

Inspired by random
forest classifier

Construct several random projections
Search all of them

Take a union

Compute distance

Return the K nearest

40



YDB: FAISS
inverted index




K-means

Unlabelled Data

K-means

Labelled Clusters

X:Centroid)

42



FAISS Inverted index

Labelled Clusters

X:Centroid)

oo e

o [e]e

oo ]e]e

sorted list of vector IDs
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Resilience
to incremental
changes

When a new
vector is added:

- The only one ID Is added
to the sorted list of IDs

» The only one polygon/
centroid Is affected

44



Random projections and Faiss vector
indexes are preferred for YDB

© © © ©

Inverted indexes Search SQL Index can Resilient to
can be easy built gueries are simple be global Incremental
on simple database pe 5z C s changes
P B8 MSQLEH 5 3% e NoEL] <
scheme T i =2
E@ia Ex'ﬂ:

7L

8] 2 AR ET
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YDB doesn’t consider HNSW index

Yes, it’s the fastest one

But this is a graph with corresponding disadvantages:

* reguires more memory (nodes + edges)

* should fit the RAM

- difficult to distribute on shards, most implementations use local indexes

- data updates require index rebuilds

46



Let’s stay
in touch

How to try YDB?
Why does it scale so well?

Why is it so robust?

What client utilities/
languages are supported?
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Conclusion

Brute force exact search works well
fg iR =R —R

l'|_l-

Approximate vector indexes are suitable for Big data

I EZR5|1E AT AR + 3 =2

N

o)
We are combining Big Data and Al
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