
An Approach to Unite
Tables and Persistent
Queues in One System
Elena Kalinina,
Technical Project Manager,
YDB

2

1 2 3
Demonstrate an approach
of uniting tables
and persistent queues
in one system

Talk about the YDB-
platform, which unites
OLTP processing, work
with persistent queues
and OLAP processing

Dive into our transactions
which combine changes
in tables and queues
in ACID way

Goals of this talk?

3

YDB – what’s this?

Transactional Processing

OLTP

• Distributed storage
• Petabytes of data
• Millions of transactions

per second

YDB Topics

Persistent queues
(like Apache Kafka)

• Delivery your data
between apps

• Exactly once / At least
once guarantees

• High loads of gigabytes
per second

Analytical Processing

OLAP

• Analytical reports with high
performance

• No compromises
with availability

YDB is an open source solution published under Apache 2.0 license

4

YDB platform:
main features

• Row-oriented tables for OLTP

• Column-oriented tables for OLAP

• YDB Topics for persistent queues

• Fault-tolerant configuration
Survives disk, node, rack, or even data center outages

• Automatic disaster recovery
Minimum latency disruptions for applications

• Horizontal scalability of storage and compute layers

• Rich SQL dialect (YQL)

• ACID transactions

YDB topics — what’s this?
YDB Topics is a realization of persistent queues within YDB

Main features
• Reliability

• Work with big amounts of data
(up to hundreds of gigabytes
per second, storing petabytes of data)

Based on YDB platform
• Change Data Capture (CDC)

• Transactions with topics and tables

API
• YDB Topic API

C++ SDK, Java SDK, Python SDK, Go SDK
All YDB Topics features are supported:
 - Exactly once delivery
 - Transactions tables-topics
- Topics autopartitioning

• Apache Kafka API
Now you can use kafka cli, kafka connect,...
And also integrate with logstash, fluentbit,...

5

6

Transactions with Tables and Topics:
Examples

Example 1: We need to ”enrich” information about an event with a table data

• Read ”simple” event info from the Topic 1

• Read the reference data from the table

• Write ”rich” event info into the Topic 2

7

Transactions with Tables and Topics:
Examples

Example 2: Resharding task. Input topic has all events and we need to
distribute these events between partitions of output topic by some rule.

• Read an event from input topic

• Define output topic partition by event data

• Write an event to the appropriate output topic partition

8

Transactions with Tables and Topics

• Read from topic and write to table

• Read from table and write to topic

• Read from one topic and write
into another topic

• … And all combinations
of these base variants

9

YDB Platform:
Technical aspects

Different Layers for Computing and Storage

• Tablet is a Replicated State Machine
which keeps its state in the
distributed storage

• Runtimes for Tablets and queries
are running on compute nodes

• The data is stored on storage nodes

• YDB moves Tablets between nodes
for load balancing

10

11

YDB platform
components

• Tablet is a Replicated State Machine

• Storage layer is separated from
compute layer

• There are different types of Tablets
(DataShard Tablet, PQTablet…)

• Actor system for communication

12

Horizontal scaling: table partitioning

Table 1

Id Value1 Value2

GX008 8 921 1 114

GX278 827 9

GY045 654 345

SK720 3 445 3 456

SM527 7 668 7 643

UA628 72 3 928

Key Data

82 8 921

283 827

346 654

1273 3 445

Table 2

DataShardTablet 1

DataShardTablet 2

DataShardTablet 3

DataShardTablet 4

DataShardTablet 5

13

YDB topic structure

• User data is grouped into topics

• Topic is divided into partitions

• One partition is a log of messages

• Sequence number of the current
message in partition is the offset
(offset is a property of the pair
partition-reader)

• Every partition is served by one PQTablet

14

YDB Platform:
Transactions with
Tables and Topics

15

YDB Transactions Key points:

• Serializable level of isolation by default

• YQL transactions from the User

• Inside YDB:
• Transactions can be distributed (if applied

to several data shards or topic partitions)

• Distributed transactions are processed
with Calvin protocol (plus additional
coordinators)

16

Distributed transaction example

BEGIN TRANSACTION Tx1;

A = READ 1 MESSAGE FROM Topic1;
B = READ Data FROM Table1 WHERE Key = A;
WRITE INTO Table1: SET Data=B+1 WHERE Key = A;

COMMIT Tx1;

Topic 1 Table 1

PQTablet 1 PQTablet 2

1 2 3 4 5 12 13 14 15

Partition 1 Partition 2
Key Data

82 8 921

283 827

2 100

1273 3 445

DataShardTablet 1

DataShardTablet 2

17

How to execute distributed transactions

YDB uses Calvin protoсol
• Calvin: Fast Distributed Transactions for Partitioned Database

Systems by Daniel J. Abadi, Alexander Thomson
• Calvin allows to execute deterministic transactions without locks

and conflicts

• Deterministic transactions know sets of keys for reading/writing
read A
read B
write C = value(A)+value(B)

• Calvin can not execute any transaction which is written as SQL query,
that’s why executing transactions in YDB is bigger than Calvin protokol

18

How Calvin executes deterministic transactions
Suppose we have these transactions:
TxA (DS1, DS2), TxB (DS1, PQ1), TxC (DS1, DS2, PQ1)

Calvin:
If Coordinator arranges incoming transactions, there will be no conflict between
transactions and we’ll get serializable isolation

Order (TxA, TxB, TxC)

TxA TxB TxC

TxA TxC

TxB TxC

DataShard Tablet 1

DataShard Tablet 2

PQTablet 1

Coordinator
Step 11Step 10 Step 12

19

Multistep transactions in YDB

Example of non-deterministic transaction:

read A
read value(A)
read B
write C = value(value(A))+value(B)

1. LOCK(A)
2. LOCK(value(A))
3. LOCK(B)
4. write(C) if LOCKs are not broken

We can split a non-deterministic transaction into the sequence of deterministic transactions.

Every step is a deterministic transaction. YDB makes LOCKs on every step. Locks
are optimistic. Overall transaction is committed at the end if LOCKs were not broken.

20

Distributed transaction example
BEGIN TRANSACTION Tx1;

A = READ 1 MESSAGE FROM Topic1;
B = READ Data FROM Table1 WHERE Key = A;
WRITE INTO Table1: SET Data=B+1 WHERE Key = A;

COMMIT Tx1;

21

Transaction: components interaction

22

Reading from topic within transaction
Getting data + Moving offset on commit

• Action: Moving offset

• Predicate: Every offset is moved
only in one transaction
So if 2 transactions are reading the same data
(1 specific partition), than one of these transactions
would be committed, and another would be aborted

• Offsets should be moved in strict order
(no skips)

23

Examples
Topic: Reading

Offset = 3

Begin Tx1

Begin Tx2

…

Read messages 3 – 5 in Tx1

…
Read messages 3 – 10 in Tx2

…

Commit Tx2 Success, Offset = 11

Commit Tx1 Abort, Offset was

changed in Tx2

24

Writing into a topic within transaction

• Action: Writing data

• Predicate: Written data are available for
reading only after transaction commit

• So if 2 transactions are committed, than
their data are available for reading in order
of transactions' commit

25

Examples
Topic: Writing

//state of partition before:
messages A, B, C

Begin Tx1
Begin Tx2
…
Write messages D, E, F in Tx1
Write messages G, H, I in Tx2
…
Commit Tx2 Success, partition

ABCGHI
…
Commit Tx1 Success, partition

ABCGHIDEF

26

Performance Tests configuration
• 100 partitions

• 100 writers

• 100 Mb/s write speed overall

• Commits every second

• 8 servers: 2 CPU Xeon (56 cores),
256 Gb RAM, 4 NVMe 3.2Tb, Net
10Gb/s

Test A Test B

MessageSize,
bytes

10 240 1 000 000

Write speed
for 1 writer,
messages/s

~102 1

Write time 50
percentile (without
transactions), ms

7 16

Write time 50
percentile (with
transactions), ms

8 25

27

Conclusions

Now YDB can operate topics
and tables within a single
transaction

It simplifies user code

We add ACID guarantees
to topic-table operations

CPU usage and system
throughput are the same

Minimal impact on latency in
case of writing small messages

Questions?

Elena Kalinina
Technical Project Manager, YDB
t.me/AfinaYndx

YDB Community Chat:
t.me/ydb_en

YDB Documentation
ydb.tech/docs/en

YDB Repository
github.com

https://t.me/AfinaYndx
https://t.me/ydb_en
https://ydb.tech/docs/en/
https://github.com/ydb-platform/ydb

