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1 2 3
Demonstrate an approach 
of uniting tables 
and persistent queues 
in one system

Talk about the YDB-
platform, which unites 
OLTP processing, work 
with persistent queues 
and OLAP processing

Dive into our transactions 
which combine changes 
in tables and queues 
in ACID way

Goals of this talk?
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YDB – what’s this?

Transactional Processing

OLTP

• Distributed storage
• Petabytes of data 
• Millions of transactions 

per second

YDB Topics

Persistent queues
(like Apache Kafka)

• Delivery your data
between apps

• Exactly once / At least 
once guarantees

• High loads of gigabytes 
per second

Analytical Processing

OLAP

• Analytical reports with high 
performance

• No compromises 
with availability

YDB is an open source solution published under Apache 2.0 license
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YDB platform: 
main features

• Row-oriented tables for OLTP

• Column-oriented tables for OLAP

• YDB Topics for persistent queues

• Fault-tolerant configuration 
Survives disk, node, rack, or even data center outages

• Automatic disaster recovery
Minimum latency disruptions for applications

• Horizontal scalability of storage and compute layers

• Rich SQL dialect (YQL)

• ACID transactions



YDB topics — what’s this? 
YDB Topics is a realization of persistent queues within YDB 

Main features
• Reliability

• Work with big amounts of data
(up to hundreds of gigabytes
per second, storing petabytes of data)

Based on YDB platform
• Change Data Capture (CDC)

• Transactions with topics and tables

API
• YDB Topic API 

C++ SDK, Java SDK, Python SDK, Go SDK
All YDB Topics features are supported:
 - Exactly once delivery
 - Transactions tables-topics
- Topics autopartitioning

• Apache Kafka API
Now you can use kafka cli, kafka connect,...
And also integrate with logstash, fluentbit,...
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Transactions with Tables and Topics: 
Examples

Example 1: We need to ”enrich” information about an event with a table data

• Read ”simple” event info from the Topic 1

• Read the reference data from the table

• Write ”rich” event info into the Topic 2
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Transactions with Tables and Topics: 
Examples

Example 2: Resharding task. Input topic has all events and we need to 
distribute these events between partitions of output topic by some rule. 

• Read an event from input topic

• Define output topic partition by event data

• Write an event to the appropriate output topic partition



8

Transactions with Tables and Topics

• Read from topic and write to table

• Read from table and write to topic

• Read from one topic and write 
into another topic

• … And all combinations 
of these base variants
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YDB Platform: 
Technical aspects



Different Layers for Computing and Storage

• Tablet is a Replicated State Machine  
which keeps its state in the
distributed storage

• Runtimes for Tablets and queries 
are running on compute nodes

• The data is stored on storage nodes

• YDB moves Tablets between nodes 
for load balancing
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YDB platform 
components

• Tablet is a Replicated State Machine

• Storage layer is separated from 
compute layer

• There are different types of Tablets
(DataShard Tablet, PQTablet…)

• Actor system for communication
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Horizontal scaling: table partitioning

Table 1

Id Value1 Value2

GX008 8 921 1 114

GX278 827 9

GY045 654 345

SK720 3 445 3 456

SM527 7 668 7 643

UA628 72 3 928

Key Data

82 8 921

283 827

346 654

1273 3 445

Table 2

DataShardTablet 1

DataShardTablet 2

DataShardTablet 3

DataShardTablet 4

DataShardTablet 5
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YDB topic structure

• User data is grouped into topics

• Topic is divided into partitions

• One partition is a log of messages

• Sequence number of the current 
message in partition is the offset 
(offset is a property of the pair 
partition-reader)

• Every partition is served by one PQTablet
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YDB Platform: 
Transactions with 
Tables and Topics
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YDB Transactions Key points:

• Serializable level of isolation by default

• YQL transactions from the User 

• Inside YDB:
• Transactions can be distributed (if applied

to several data shards or topic partitions)

• Distributed transactions are processed
with Calvin protocol (plus additional
coordinators)
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Distributed transaction example

BEGIN TRANSACTION Tx1;

A = READ 1 MESSAGE FROM Topic1;
B = READ Data FROM Table1 WHERE Key = A;
WRITE INTO Table1: SET Data=B+1 WHERE Key = A;

COMMIT Tx1; 

Topic 1 Table 1

PQTablet 1 PQTablet 2

1 2 3 4 5 12 13 14 15

Partition 1 Partition 2
Key Data

82 8 921

283 827

2 100

1273 3 445

DataShardTablet 1

DataShardTablet 2
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How to execute distributed transactions

YDB uses Calvin protoсol
• Calvin: Fast Distributed Transactions for Partitioned Database

Systems by Daniel J. Abadi, Alexander Thomson
• Calvin allows to execute deterministic transactions without locks

and conflicts

• Deterministic transactions know sets of keys for reading/writing
read A
read B
write C = value(A)+value(B)

• Calvin can not execute any transaction which is written as SQL query, 
that’s why executing transactions in YDB is bigger than Calvin protokol
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How Calvin executes deterministic transactions
Suppose we have these transactions: 
TxA (DS1, DS2), TxB (DS1, PQ1), TxC (DS1, DS2, PQ1)

Calvin: 
If Coordinator arranges incoming transactions, there will be no conflict between 
transactions and we’ll get serializable isolation 

Order (TxA, TxB, TxC) 

TxA TxB TxC

TxA TxC

TxB TxC

DataShard Tablet 1

DataShard Tablet 2

PQTablet 1

Coordinator
Step 11Step 10 Step 12
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Multistep transactions in YDB

Example of non-deterministic transaction:

read A
read value(A)
read B
write C = value(value(A))+value(B)

1. LOCK(A)
2. LOCK(value(A))
3. LOCK(B)
4. write(C) if LOCKs are not broken

We can split a non-deterministic transaction into the sequence of deterministic transactions.

Every step is a deterministic transaction. YDB makes LOCKs on every step. Locks 
are optimistic. Overall transaction is committed at the end if LOCKs were not broken.
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Distributed transaction example
BEGIN TRANSACTION Tx1;

A = READ 1 MESSAGE FROM Topic1;
B = READ Data FROM Table1 WHERE Key = A;
WRITE INTO Table1: SET Data=B+1 WHERE Key = A;

COMMIT Tx1; 
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Transaction: components interaction
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Reading from topic within transaction
Getting data + Moving offset on commit

• Action: Moving offset

• Predicate: Every offset is moved 
only in one transaction
So if 2 transactions are reading the same data 
(1 specific partition), than one of these transactions 
would be committed, and another would be aborted

• Offsets should be moved in strict order 
(no skips)
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Examples 
Topic: Reading

Offset = 3

Begin Tx1

Begin Tx2

…

Read messages 3 – 5 in Tx1

…
Read messages 3 – 10 in Tx2

…

Commit Tx2 Success, Offset = 11

Commit Tx1 Abort, Offset was                     

changed in Tx2
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Writing into a topic within transaction

• Action: Writing data 

• Predicate: Written data are available for 
reading only after transaction commit

• So if 2 transactions are committed, than 
their data are available for reading in order 
of transactions' commit
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Examples 
Topic: Writing

//state of partition before: 
messages A, B, C

Begin Tx1
Begin Tx2
…
Write messages D, E, F in Tx1
Write messages G, H, I in Tx2
…
Commit Tx2 Success, partition       

ABCGHI
… 
Commit Tx1 Success, partition 

ABCGHIDEF
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Performance Tests configuration
• 100 partitions

• 100 writers

• 100 Mb/s write speed overall

• Commits every second

• 8 servers: 2 CPU Xeon (56 cores), 
256 Gb RAM, 4 NVMe 3.2Tb, Net 
10Gb/s

Test A Test B

MessageSize, 
bytes

10 240 1 000 000

Write speed 
for 1 writer, 
messages/s

~102 1 

Write time 50 
percentile (without 
transactions), ms 

7 16

Write time 50 
percentile (with 
transactions), ms 

8 25
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Conclusions

Now YDB can operate topics 
and tables within a single 
transaction

It simplifies user code

We add ACID guarantees 
to topic-table operations

CPU usage and system 
throughput are the same

Minimal impact on latency in 
case of writing small messages



Questions?

Elena Kalinina
Technical Project Manager, YDB
t.me/AfinaYndx

YDB Community Chat: 
t.me/ydb_en

YDB Documentation 
ydb.tech/docs/en

YDB Repository 
github.com

https://t.me/AfinaYndx
https://t.me/ydb_en
https://ydb.tech/docs/en/
https://github.com/ydb-platform/ydb

