v te ph by

PSS AI“IM”“Q"
’,

Al 2V .

YDB vs. TPC-C: the Good,
the Bad, and the Ugly
behind High-Performance

Benchmarkin

Evgenii lvanov
Yandex Infrastructure

%3 YDB

Tech
Internals

Conf

19 April 2024
Cyprus, Limassol

=7 YDB vs. TPC-C: the Good, the Bad,
and the Ugly behind High-
Performance Benchmarking

Evgenii lvanov
Principal Software Engineer at YDB

Three types of this talk attendees 3

1

A DBMS developer A DBMS user A developer without a
(application DBMS dreaming of
developer or admin) having one someday

2

3

o

t bugs

ing in common excep

Noth

LL]
Y
=
<
LL]
L

DBMS benchmarks! @

ol

m e |
L - »
[J tis y
{1 X
i e " 'l
e v LI ’,‘ — —
I | . —/ | .
i a 4 o - =il
! A / 1 C et
‘ ' | - :
= = - \ Q
. '\ — ‘\n\ '
= \\\4 e — —
/ —_
J 4

{/

i -

Table of contents @

1 YDB overview
2 YDB benchmarks evolution

3 TPC-C

4. PostgreSQL vs. Distributed DBMS

5 Conclusions

YDB
overview

YDB
Open-Source Distributed SQL Database

4

Relational DB Clusters with Apache 2.0 Star
(mainly OLTP, thousands of license ydb-platform
OLAP is servers on GitHub

3

2

1

available for
testing)

http://github.com/ydb-platform/ydb

Strictly consistent (o)

1

CAP-theorem — Serializable transaction
YDB chooses CP execution

2

Highly available and fault tolerant

Multiple availability YDB iIs read-write
zones (AZ): automatic available even after
recovery losing an AZ and a rack

simultaneously

A mission critical database

365x24x7 (366x24x7 No downtime during a
when needed) maintenance (e.g. to roll
out a new YDB version)

Beyond OLTP: YDB is a platform (12)

4

2 3

1

Column- YDB Topic Network Block And more
oriented tables Service Store (aka NBS)

are coming (persistent

soon and that’s queue)

not a menace

A TN NN

Wi

; —

—
=

=

=

l

=

—

=

-~

D

“
“\/ i f

W J ’/ ﬁm:_:

———

YDB benchmarks evolution

Database performance definition

» Throughput: serving infinite
number of requests/second

- Latency: sending a reply before
being requested

The cost of DBMS running (15)

Q
1

Price

Code efficiency

TIG

Key focus areas before OSS

3

2

1

Scalability without Custom benchmarks Performance tests
compromising on on a special testing
consistency and fault- cluster

tolerance

YDB testing cluster

()

250 >1000 200 TB

Servers Databases of data

After YDB became 0SS

We’ve started from:

2

1

Focus on Comparison * Yahoo! Cloud Serving Benchmark
efficiency (vs. with other open (YCSB)

scalability source

in the past) distributed TPC-C — best benchmark for OLTP

DBMS (and distributed transactions)

Hardware for benchmarking

‘ |

'.J
| l BENCHMARK DATABASE
& CLUSTER CLUSTER

Distributed vs. Monolithic In
Benchmarking Context

» Monolithic databases are limited by single server hardware
 Distributed databases have almost no limits

» |nefficiencies in benchmarks are more crucial: consider overloading DBMS
with 16, 128 and 4096 CPU cores

YDB is a benchmark for benchmarks

— \

» Expectations: take the benchmark
g and improve YDB

&5 '~ - Reality: take YDB and improve the
s Al benchmarks

.......

Yahoo! Cloud Serving Benchmark

A popular key-value Created for NoSQL Supports almost all
benchmark key-value DBs but stili modern databases
loved by everybody

Why key-value? (22)

1

A lot of people still It’'s easy to analyze the You can’t do

need key-value results of YCSB distributed transactions
well if you can’t do
key-value workloads
well

2

3

Key findings

1

Quickly spotted
multiple bottlenecks
while using YCSB

2

Added YCSB runs to
Cl as a performance
regression test

3

Discovered that
YCSB consumes
a lot of hardware
resources on the
client side by its
design

TPC-C has the same HW @
consumption issues

* Since 1992

» «The only objective comparison for
evaluating OLTP performance» —
CockroachDB

* YugabyteDB and TiDB also stated
that TPC-C is the most objective
performance measurement of OLTP
systems

Simulates an e-commerce organization ()

T =T

@ @ @ O

Warehouse Warehouse Warehouse Warehouse

TPC-C logic in a nutshell

» Number of warehouses is a parameter

- Each warehouse serves 10 districts (around 100 MB of data)
- Each district has a terminal

» Customers use a terminal for orders and payments

- Sometimes customers check the order status

- Delivery is handled by database as well

- \Warehouses rarely make inventorization

TPC-C transactions

44%

B NewOrder

B Payment

B OrderStatus

® Delivery
StockLevel

TPC-C transactions

Require
serializable level
of isolation

Require multi-
step transactions

Are write intensive
workload
(2:1 writes/reads)

Benchmark
measures the
number of New
Order transactions
per minute —
tpmC

5:‘; CMU Benchbase (31)
"y o

» Multi-DBMS SQL Benchmarking Framework via JDBC

» Developed by Carnegie Mellon under Andy Pavlo’s supervision
 |t's easy to add new DBMS and benchmarks
* The only well known TPC-C implementation

* YugabyteDB uses Benchbase fork

» We had to fork too (with a goal to upstream the YDB support)

Issue 1: Data import via INSERT

- Terabytes of initial data G

» Usually DBMSs have a faster import WAITNG.....
operations like bulk upsert in YDB

- Waiting for hours to import the data

High CPU usage by benchmark itself

LU L IECT RO YRR {1 RURL LSO RN LY O P LR LI
000 0 OO0 0C COI0N ONE ORN DOl My ..
O N R T O R U R DY)

00000000000 1000 00 00 D0 IIniIim0cnol ooiee 00 0
O OO S T I O e

!-—
Qe
'

> . g !
3
& 5]
i)
<]
b o
o
g!,
-——
a=n
‘]
B — .
= =
'37.:.; i\
.
1 “»

1]
L

—

[
—i
=
o
L]
-
D]
Rles]
Cmmmp
amm
e—

.'—

L)

L

D
oom—r
e—
==

.
-

© gl
3
'
<]
—_——
e
& »
¢ L
l 2

=
=
S
=_
-
=

Lcom/oltpbenchmark/benchmarks/tpcc/TPCCLoader:: :loadStock
Lcom/oltpbenchmark/benchmarks/tpcc/TPCCLoader$2:::load
Lcom/oltpbenchmark/api/LoaderThread:::run
Lcom/oltpbenchmark/util/ThreadUtil$SLatchRunnable:::run
Interpreter

Interpreter

call_stub
JavaCalls::call_helper
JavaCalls call virtual

S

JavaThread read main_inner
Thread::call_run
thread_native_entry

Thread-191

Multithreaded benchmark with
a single lock

Import threads They share the same Had to change to
generate random java.util.Random ThreadLocalRandom

strings object

Issue 2: One warehouse terminal — @
one thread

* Our minimal setup — 15K warehouses
- 15K warehouses — 150K terminals

Sync vs. Async

- We want concurrency without too many threads
 |t's hard to write async programs in old languages
» Future/Promise model

» Goroutines — simple and efficient

- Java virtual threads — Java's attempt to go Go

Issue 3: Benchmark consumes
too much RAM

@)

40 MB 15 000 600 GB

Single warehouse Warehouses

Initial benchmark requirements
to run 15K warehouses

To test YDB running

on 3 servers, we used

5 servers to run the
benchmark (each 128
cores and 512 GB RAM)

150K 600 GB

Threads

Scaling out

- DBMS with 9, 15, 30, 60, 81 servers
- YDB, CockroachDB, YugabyteDB

» Single TPC-C run in AWS costs
$10,000

* Multiple runs?

INPCACEE

MOULIO tOTRI
LOMES 9%
Massomt L

ANl R Oow

EOU eSS wartt
RAL W UL
£y 39

RATT DULAS

OAXE HELLIS
yreNy

35 ESRSREREEN ¥

Minimum changes — maximum benefit

1 Java virtual threads (Java >= 21)

2 1 terminal — 1 virtual thread

3 Aggregate transaction history

- 6 MB RAM per warehouse (instead of 40)
» 1 CPU core per 1000 warehouses
» 15K warehouses — 90 GB RAM, 15 CPU cores

Deadlock for free

1 Number of sessions is limited

2 Some vthreads hold session waiting for network 1/0
and loose carrier thread

3 Other vthreads call Object .wait() to obtain a session
and block carrier thread

- Java virtual threads is a silver bullet for Russian roulette
* Very easy to get deadlock

Our fork and upstream

1

github.com/ydb-
platform/tpcc

2

We plan to upstream
the improvements

https://github.com/ydb-platform/tpcc
https://github.com/ydb-platform/tpcc

What happens when you
compare them?

PostgreSQL appears

.....

J
2

Wi v
_, ;\:
{f

}

S —

,

© 5

Yet another Benchbase fork

https://github.com/ydb- Everything we’ve

platform/tpcc-postgres discussed + HikariCP

https://github.com/ydb-platform/tpcc-postgres
https://github.com/ydb-platform/tpcc-postgres

Test setup: 3 servers

» 128 logical cores: 2x32-cores Intel Xeon Gold 6338 CPU
@ 2.00GHz with hyper-threading turned on

« 4xNVMe disks
« 512 GB RAM

50 Gb network

» Transparent hugepages turned on (huge pages in case
of PostgreSQL)

- Ubuntu 20.04.3 LTS

DBMS should survive a single
server failure

PostgreSQL has two CockroachDB and YDB
sync replicas use replication factor 3

Infinite PostgreSQL configurations

Postgres configurations summary

- Postgres “fault intolerant” setups are extremely
performant

» Sync replication is a huge bottleneck and limits
vertical scalability

* More information can be found in the YDB blog

tpmC* (throughput) (51)

tpmC (higher is better)

250,000
200,000 :
165,915 157,262

150,000
100,000

50,000

0
PostgreSQL YDB 16K YDB 13K CockroachDB

* The results are not officially recognized TPC results and are not comparable with other TPC-C test ?l:
results published on the TPC website.

Latency

NewOrder latency, ms (lower is better)

4,000
3,500
3,000
2,500
2,000
1,500
1,000
500

0

3,500
3,000

32

PostgreSQL

1,000
512

128 -

YDB 16K

256 256
52 o e

YDB 13K

(=)

™ 50%, ms
™ 95%, ms
M 99%, ms

193
36 20

CockroachDB

TIG

NewOrder latency in Postgres

53

Postgres NewOrder Latencies, seconds (lower is better)

14
12
07 March 2024 05:37:15
10 , ﬁ A - m@p99.9 0.19
3 | 1‘ : § Name v (:‘ i
5 | | mp99.9 0.19 ** | 1
| | 099.0 0.12 | |
4 | [/—\ [A ﬁ . i f mp95.0 0.11 ! \ X-
2 \ j '&]\ Z ; / P00 0.099 *** \ /) \
A N A __j:v _ - .I ¢ i \., o | \ ‘; " ' ,,-._--"'v _ M “ o I‘ \;__. K f | E 7 /
0 05:20 05:30 05:40 05:50 06:00 06:10

YDB scalability

YDB scalability, tpmC* (higher is better)

15 000 1,447,267

10 000 873,578
F00 505,084
202,819
. N
3 O 18 36

Number of servers

* The results are not officially recognized TPC results and are not comparable with other TPC-C test ?l:
results published on the TPC website.

TPC-C results summary

1

PostgreSQL wins
attaining 5% more
tomC than YDB

2

PostgreSQL
exhibits
significantly
higher latency

3

YDB holds

a 29% tpmC
advantage over
CockroachDB

4

Distributed
DBMSs can be
easily scaled by
adding commodity
hardware

Conclusions

<
9,
v

- Be ready to improve OSS benchmarks @ §§::ff§: °§§§§§f.§=.§ @
¢ Implement benChmarkS ..“o.o:E.:°:.§°E°E::.E.E.E E::::o o*
in a way, that they don’t consume more oo 2 %373 33%° %3s ° o 0722e°°° o0e
resources than DBMS :E:EEE:“;::: °=§3§°::§§f§:§
 YCSB and TPC-C are great benchmarks :;:§°°:°°;§:°§ 353.::::3?:
+ PostgreSQL might not be enough, N e LI k. ¢
and distributed DBMSs shine even :..35::?5::. §.f:::f°3..:333§;f::: .
in clusters with just three servers o "03 sestee’s o 3 o

YDB blog, community,
presentations, recordings

Please leave
your feedback

- Be ready to improve OSS benchmarks

* Implement benchmarks
in a way, that they don’t consume more
resources than DBMS

- YCSB and TPC-C are great benchmarks

» PostgreSQL might not be enough,
and distributed DBMSs shine even
In clusters with just three servers

Evgenii lvanov, @eivanov39
Principal Software Engineer at YDB

