
1

YDB vs. TPC-C: the Good, the Bad,
and the Ugly behind High-
Performance Benchmarking

Evgenii Ivanov
Principal Software Engineer at YDB

3Three types of this talk attendees

A DBMS developer

1
A DBMS user
(application
developer or admin)

2
A developer without a
DBMS dreaming of
having one someday

3

Nothing in common except bugs?

BUG FEATURE

4

DBMS benchmarks! 5

Table of contents

1

2

3

4

YDB overview

YDB benchmarks evolution

TPC-C

PostgreSQL vs. Distributed DBMS

5 Conclusions

6

YDB
overview

YDB
Open-Source Distributed SQL Database

Relational DB
(mainly OLTP,
OLAP is
available for
testing)

1
Clusters with
thousands of
servers

2
Apache 2.0
license

3
Star
ydb-platform
on GitHub

4

8

http://github.com/ydb-platform/ydb

Strictly consistent

CAP-theorem —
YDB chooses CP

1
Serializable transaction
execution

2

9

Highly available and fault tolerant

Multiple availability
zones (AZ): automatic
recovery

1
YDB is read-write
available even after
losing an AZ and a rack
simultaneously

2

10

A mission critical database

365x24x7 (366x24x7
when needed)

1
No downtime during a
maintenance (e.g. to roll
out a new YDB version)

2

11

Beyond OLTP: YDB is a platform

Column-
oriented tables
are coming
soon and that’s
not a menace

1
YDB Topic
Service
(persistent
queue)

2
Network Block
Store (aka NBS)

3
And more

4

12

YDB benchmarks evolution 13

• Throughput: serving infinite
number of requests/second

• Latency: sending a reply before
being requested

Database performance definition 14

The cost of DBMS running

Price

Code efficiency

15

Key focus areas before OSS

Scalability without
compromising on
consistency and fault-
tolerance

1
Custom benchmarks

2
Performance tests
on a special testing
cluster

3

16

250 >1000 500 TB
Databases Servers of data

YDB testing cluster 17

After YDB became OSS

Focus on
efficiency (vs.
scalability
in the past)

1
Comparison
with other open
source
distributed
DBMS

2
• Yahoo! Cloud Serving Benchmark

(YCSB)

• TPC-C — best benchmark for OLTP
(and distributed transactions)

We’ve started from:

18

Hardware for benchmarking 19

Distributed vs. Monolithic in
Benchmarking Context
• Monolithic databases are limited by single server hardware

• Distributed databases have almost no limits

• Inefficiencies in benchmarks are more crucial: consider overloading DBMS
with 16, 128 and 4096 CPU cores

20

• Expectations: take the benchmark
and improve YDB

• Reality: take YDB and improve the
benchmarks

YDB is a benchmark for benchmarks 21

Yahoo! Cloud Serving Benchmark

A popular key-value
benchmark

1
Created for NoSQL
key-value DBs but still
loved by everybody

2
Supports almost all
modern databases

3

22

Why key-value?

A lot of people still
need key-value

1
It’s easy to analyze the
results of YCSB

2
You can’t do
distributed transactions
well if you can’t do
key-value workloads
well

3

23

Key findings

Quickly spotted
multiple bottlenecks
while using YCSB

1
Added YCSB runs to
CI as a performance
regression test

2
Discovered that
YCSB consumes
a lot of hardware
resources on the
client side by its
design

3

24

TPC-C has the same HW
consumption issues

25

• Since 1992
• «The only objective comparison for

evaluating OLTP performance» —
CockroachDB

• YugabyteDB and TiDB also stated
that TPC-C is the most objective
performance measurement of OLTP
systems

TPC-C 26

Simulates an e-commerce organization

HQ

Warehouse Warehouse Warehouse Warehouse

27

TPC-C logic in a nutshell

• Number of warehouses is a parameter

• Each warehouse serves 10 districts (around 100 MB of data)

• Each district has a terminal

• Customers use a terminal for orders and payments

• Sometimes customers check the order status

• Delivery is handled by database as well

• Warehouses rarely make inventorization

28

TPC-C transactions

NewOrder
Payment
OrderStatus
Delivery
StockLevel

44%

44%

4%
4%
4%

29

TPC-C transactions

Require
serializable level
of isolation

Require multi-
step transactions

Are write intensive
workload
(2:1 writes/reads)

Benchmark
measures the
number of New
Order transactions
per minute —
tpmC

30

CMU Benchbase

• Multi-DBMS SQL Benchmarking Framework via JDBC

• Developed by Carnegie Mellon under Andy Pavlo’s supervision

• It’s easy to add new DBMS and benchmarks

• The only well known TPC-C implementation

• YugabyteDB uses Benchbase fork

• We had to fork too (with a goal to upstream the YDB support)

31

• Terabytes of initial data
• Usually DBMSs have a faster import

operations like bulk upsert in YDB
• Waiting for hours to import the data

Issue 1: Data import via INSERT 32

High CPU usage by benchmark itself 33

Multithreaded benchmark with
a single lock

Import threads
generate random
strings

1
They share the same
java.util.Random
object

2
Had to change to
ThreadLocalRandom

3

34

• Our minimal setup — 15K warehouses
• 15K warehouses — 150K terminals

Issue 2: One warehouse terminal —
one thread

35

Sync vs. Async

• We want concurrency without too many threads

• It’s hard to write async programs in old languages

• Future/Promise model

• Goroutines — simple and efficient

• Java virtual threads — Java’s attempt to go Go

36

40 MB 15 000 600 GB
Warehouses Single warehouse RAM

Issue 3: Benchmark consumes
too much RAM

37

150K 600 GB
RAMThreads

Initial benchmark requirements
to run 15K warehouses

To test YDB running
on 3 servers, we used
5 servers to run the
benchmark (each 128
cores and 512 GB RAM)

38

• DBMS with 9, 15, 30, 60, 81 servers
• YDB, CockroachDB, YugabyteDB
• Single TPC-C run in AWS costs

$10,000
• Multiple runs?

Scaling out 39

Minimum changes — maximum benefit

2
3

Java virtual threads (Java >= 21)

1 terminal — 1 virtual thread

Aggregate transaction history

40

• 6 MB RAM per warehouse (instead of 40)
• 1 CPU core per 1000 warehouses
• 15K warehouses — 90 GB RAM, 15 CPU cores

1

Deadlock for free

1
2

3

Number of sessions is limited

Some vthreads hold session waiting for network I/O
and loose carrier thread

Other vthreads call Object.wait() to obtain a session
and block carrier thread

41

• Java virtual threads is a silver bullet for Russian roulette
• Very easy to get deadlock

Our fork and upstream

github.com/ydb-
platform/tpcc

1
We plan to upstream
the improvements

2

42

https://github.com/ydb-platform/tpcc
https://github.com/ydb-platform/tpcc

What happens when you
compare them?

43

PostgreSQL appears 44

PostgreSQL vs. Distributed 45

Yet another Benchbase fork

https://github.com/ydb-
platform/tpcc-postgres

1
Everything we’ve
discussed + HikariCP

2

46

https://github.com/ydb-platform/tpcc-postgres
https://github.com/ydb-platform/tpcc-postgres

Test setup: 3 servers

• 128 logical cores: 2x32-cores Intel Xeon Gold 6338 CPU
@ 2.00GHz with hyper-threading turned on

• 4xNVMe disks

• 512 GB RAM

• 50 Gb network

• Transparent hugepages turned on (huge pages in case
of PostgreSQL)

• Ubuntu 20.04.3 LTS

47

DBMS should survive a single
server failure

PostgreSQL has two
sync replicas

CockroachDB and YDB
use replication factor 3

48

Infinite PostgreSQL configurations 49

Postgres configurations summary

• Postgres “fault intolerant” setups are extremely
performant

• Sync replication is a huge bottleneck and limits
vertical scalability

• More information can be found in the YDB blog

50

tpmC* (throughput)

213,815 202,819
165,915 157,262

0

50,000

100,000

150,000

200,000

250,000

PostgreSQL YDB 16K YDB 13K CockroachDB

tpmC (higher is better)

51

* The results are not officially recognized TPC results and are not comparable with other TPC-C test
results published on the TPC website.

Latency

32 128 64 36

3,000

512 256 105

3,500

1,000

256 193
0

500
1,000
1,500
2,000
2,500
3,000
3,500
4,000

PostgreSQL YDB 16K YDB 13K CockroachDB

NewOrder latency, ms (lower is better) 50%, ms
95%, ms
99%, ms

52

NewOrder latency in Postgres

Postgres NewOrder Latencies, seconds (lower is better)

05:20 05:30 05:40 05:50 06:00 06:100

2

4

6

10

12

14

07 March 2024 05:37:15

p99.9 0.19 ***

Name Value

p99.9 0.19 ***
p99.0 0.12 ***

p95.0 0.11 ***

p90.0 0.099 ***

8

10

12

14

53

YDB scalability

202,819
505,084

873,578

1,447,267

0
200,000
400,000
600,000
800,000

1,000,000
1,200,000
1,400,000
1,600,000

3 9 18 36

YDB scalability, tpmC* (higher is better)

54

Number of servers

0

15 000

500

10 000

* The results are not officially recognized TPC results and are not comparable with other TPC-C test
results published on the TPC website.

TPC-C results summary

PostgreSQL wins
attaining 5% more
tpmC than YDB

1
PostgreSQL
exhibits
significantly
higher latency

2
YDB holds
a 29% tpmC
advantage over
CockroachDB

3
Distributed
DBMSs can be
easily scaled by
adding commodity
hardware

4

55

• Be ready to improve OSS benchmarks
• Implement benchmarks

in a way, that they don’t consume more
resources than DBMS

• YCSB and TPC-C are great benchmarks
• PostgreSQL might not be enough,

and distributed DBMSs shine even
in clusters with just three servers

Conclusions

YDB blog, community,
presentations, recordings

Please leave
your feedback
• Be ready to improve OSS benchmarks

• Implement benchmarks
in a way, that they don’t consume more
resources than DBMS

• YCSB and TPC-C are great benchmarks

• PostgreSQL might not be enough,
and distributed DBMSs shine even
in clusters with just three servers

Evgenii Ivanov, @eivanov89
Principal Software Engineer at YDB

