
YDB: How To Implement
Streaming RAG
In A Distributed
Database

Alexander Zevaykin,

PhD, YDB Team Leader ydb.tech

Elena Kalinina,

YDB Technical Manager

Retrieval Augmented Generation

Streaming RAG

Enterprises Are Not Developing

Their Own Generative AI Models

Too complex

and too costly

Millions of dollars

• Complex feature engineering

• Custom model building

• Powerful foundation models

(with general-purpose reasoning)

• Domain-specific enterprise data via RAG

Scarce GPU

Expertise

Data privacy

A lot of data

acquisition

Compute infrastructure

Retrieval Augmented Generation

Prompt

What can
I see in Paris?

LLM

I don’t know…

Retrieval Augmented Generation

Prompt

What can
I see in Paris?

+

Chat History

Enhanced

Prompt

What is the
cinema poster
in Paris tomorrow?

LLM

I don’t know…

Retrieval Augmented Generation

Embedding

model
Prompt

What can
I see in Paris?

+

Chat History

Enhanced

Prompt

What is the
cinema poster
in Paris tomorrow?

Vector
database

Similarity search

LLM

Embedding

I don’t know…

Retrieval Augmented Generation

Embedding

model
Prompt

What can
I see in Paris?

+

Chat History

Enhanced

Prompt

What is the
cinema poster
in Paris tomorrow?

Vector
database

Relational
database

Similarity search Lookup docs

Vector IDs

Augmented

Prompt

What is the
cinema poster
in Paris tomorrow?

LLM

• The Shawshank Redemption

• The Godfather

• The Lord of the Rings

• Pulp Fiction

Embedding
Relevant

facts

Trend #2: Moving Toward Streaming RAG

2018 2019

GPT-2GPT-1

2020 2022

GPT-4GPT-3

2023

GPT-3.5

AI without up-to-date

data is frustrating

and its value is limited

Generative AI in the

enterprise is more about

streaming, not batch

Dynamic Healthcare

Monitoring and

Assistance

Live News AnalysisReal-Time Financial

Advisory Platform

Use Cases Of Streaming RAG

YDB

• Horizontal scaling

• ACID transactions in multiple AZ

• Operability and automatic recovery

in case of failures

• Scaling by millions of transactions per

second and petabytes of data

• Production installations of tens of

thousands of servers

• Open-Source under Apache 2.0

license

What Is YDB?

github.com/ydb-platform/ydb ydb.tech

Distributed SQL RDMS for

operational, analytical and streaming

workloads

https://github.com/ydb-platform/ydb
https://ydb.tech/zh

YDB As A Platform

Distributed storage ACID transactions

OLAP-tables OLTP-tables Federated queries

TopicsUnified query language

Key-Value

Vector search

YDB Intrinsic Advantages

Scale

Sharding Replication

Cross Datacenter

Spiky workload

Production readiness

Fault-tolerance Rolling update

Persistence Consistency

MonitoringAlerting Support

Herculean tasks

YDB: Real-time Streaming RAG

OLAP tables

OLTP tables

CDC

YDB

Transform Augment

Stream processing

Encoder

Text Vector embedding

Vector index

Data Sources

Elena Kalinina,

Technical Project Manager, YDB

Streaming
Processing

Based on YDB platform

• Change Data Capture (CDC)

• Transactions with topics

and tables

YDB Topics — What’s This?
YDB Topics is an implementation of persistent queues within YDB

Main features

• Reliability

• High throughput

API

• YDB Topic API
C++ SDK, Java SDK, Python SDK, Go SDK

All YDB Topics features are supported

• Apache Kafka API

Reader 1 Reader 2

Writer 1 Writer 2

Partition 1Partition 0 Partition 2

Topic A

0 1 2 0 1 … 10 11 0 1 2 3

Table 1

Key Data

2 abcd

45 defg

Table 1

Key Data

2 abcd

Change Data Capture

• Changefeeds

for capture any table changes

• Exactly once delivery

• Change records are sharded

• Order of changes

Table 1

Key Data

2 abc

45 def

update

rows

delete

row

Partition 0 Partition 1

Change feed (topic)

update

(Key=2)
update

(Key=45)

delete

(Key=45)

Transfer Data From Topic To Table

CREATE TABLE TargetTable (<Some Columns>);

CREATE TOPIC SourceTopic;

$transform = {

< Some Complex Transformation Logic >

};

CREATE TRANSFER ExampleTransfer

FROM SourceTopic TO TargetTable USING $transform;

Transactions With Tables And Topics

• ACID transactions involving

tables and topics

• Within one database

User

Table 1 Table 2

Topic 1 Topic 2

User ID Data

Distributed Transaction Example:

Enrich Events

BEGIN TRANSACTION Tx1;

A = READ 1 EVENT FROM Topic1;

B = READ Data FROM Table1 WHERE UserID = GetUserID(A);

C = EnrichEvent (A,B);

WRITE INTO Topic2: EVENT C;

COMMIT Tx1;

Worker

Partition 0 Partition 1

Topic 1 — simple events

Partition 0 Partition 1

Topic 2 — enriched events

Table 1 — user profiles

CPU usage and system

throughput are the same

We add ACID guarantees

to topic-table operations

Transactions With Tables And Topics

Minimal impact on latency

It simplifies user code

Topics

Autopartitioning

• Topic is divided into the partitions

for scalability

• Partitions count can be increased

automatically

• Guarantees:

– Exactly once for writing

– Reading order Partition 1Partition 0 Partition 2

Topic A

… … …

Partition 4Partition 3

… …

Partition 1Partition 0 Partition 2

… … …

Topic A

Streaming For RAG in YDB

• Deliver table changes

with changefeeds

• Transfer data from topic to table

• Any topic-table data transformations

within classic ACID transactions

• Topics autopartitioning

• High throughput

• Reliable

• Kafka API compatible

YDB: Real-time Streaming RAG

OLAP tables

OLTP tables

CDC

YDB

Transform Augment

Stream processing

Encoder

Text Vector embedding

Vector index

Data Sources

Vector Index

• The index is global

• The index is synchronous and consistent

Vector Index Requirements

• Table size = billions

• Search latency = tens of ms

= scale in a linear way
• Creation time = O (table size)

• Occupied space = O (table size)

Automatic scaling Consistent

transactional insertion

and searching

Distributed system

Why Don't Existing Algorithms Suit Us?

28

CREATE TABLE table (

id Uint32,

embedding String,

INDEX idx_vector

GLOBAL USING vector_kmeans_tree

ON (embedding)

WITH (

similarity=inner_product,

vector_type=float,

vector_dimension=1024),

PRIMARY KEY (id)

)

SQL Commands

SELECT * FROM table

VIEW idx_vector

ORDER BY Knn::CosineDistance(

embedding,

$target)

LIMIT $k

Vector Index As An Inverted List

× ×

×

Vectors

×

×

×

Cluster

Centroids

Search Space

Pruning Algorithms

R-tree

R11

R10

R1

R3

R8

R12

R9

R13

R17

R18

R19R16

R15

R2

R6

R7

R5

R4

R
1

4

R1 R2

R11 R12R8 R9 R10 R13 R14 R15 R16 R17 R18 R19

R3 R4 R5 R6 R7

indexed table
(PK), embedding, covered

Hierarchy Of YDB Vector Index Clusters

…

…

…

…

…

…

level table
(parent, id), centroid

posting table
(parent, PK), covered

0 level

1 level

Filterable Vector Index

Can’t filter

Before vector index

• can’t use a single index

• need for full scan

After vector index

• need for a repeat request

SELECT * FROM table VIEW idx_vector

WHERE user_id = $target_user_id

ORDER BY Knn::CosineDistance(

embedding,$target_embedding)

LIMIT $k;

Need to filter

Inside index

Filtrable Vector Index

Secondary index for prefix

Vector index 1 Vector index N

Insertion To Vector Index

× ×

×

New vector

×

×

×

• Just one centroid of one cluster would be changed

• The change needs to be pushed up through the levels

• How to try YDB?

• Why does it scale so well?

• Why is it so robust?

• What client utilities/

languages are supported?

Let’s Stay
In Touch

35

Conclusion ydb.tech

• YDB is a distributed database

• YDB as a platform offers sophisticated streaming and vector index

• There is a trend for RAG, especially streaming

• We are combining Big Data and AI

https://ydb.tech/zh

