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• YDB developer
• Amateur speaker
• Outside YDB I enjoy spending time 

with my family, aerial photography, 
and reading

About myself
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Rumors about YDB
and YugabyteDB

• Many believe that YDB and YugabyteDB
are the same thing

• Others say we once had a bar fight
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The truth

• YDB and YugabyteDB are different
distributed DBMSs

• We enjoy discussing topics related 
to benchmarking and distributed systems
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DBMS types 
and sharding 
a monolith
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1. No synchronous replication: 
it’s OK to lose data

2. Monolith DBMS like PostgreSQL: 
scalability is limited

3. Sharded or Distributed DBMS: many 
users and large-scale project

4. Distributed DBMS: consistent global 
snapshot, on-the-fly scaling at any time

DBMS usage 
evolution
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It’s not just about performance

All of this implies replication
And efficiency of resource utilization 
depends on whether we use replicas 
for query processing or not

• Availability
• Durability
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What we will talk about today

88

1

2

3

4

We will discuss myths related to 
sharding, wide/distributed transactions, 
and two-phase commit

In case of multi-shard transactions Citus-
like solutions are not ACID and do not 
provide the same guarantees as 
PostgreSQL

Using TPC-C as an example, we will 
show that PostgreSQL is highly 
efficient, but synchronous replication 
might limit vertical scaling

Distributed DBMSs are more efficient 
than commonly believed



Myths and 
misconceptions
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Monolith sharding

1. Instead of a single DBMS, we have 
N DBMSs, managed by a coordinator 
(routing layer).

2. Single-shard and multi-shard 
(wide) transactions.

3. Shards are visible to the user, as 
single-shard and multi-shard transactions 
have different guarantees.
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All your 
transactions 
need is ACID

• Atomicity
• Consistency
• Isolation
• Durability

11



Isolation levels

Serializable — the default level in SQL 
standard, CockroachDB and YDB. 
Anomalies are impossible.

Weaker isolation levels
(anomalies are possible [1]):

• repeatable read (snapshot isolation)

• read committed — the default in 
PostgreSQL

• read uncommitted
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https://blog.ydb.tech/do-we-fear-the-serializable-isolation-level-more-than-we-fear-subtle-bugs-5a025401b609


Isolation levels: practical considerations

Serializable

DBMS is the one who takes care 
about A-C-I-D.

Weaker isolation levels

Application developer is responsible 
for transaction isolation.
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Wide transactions in Citus are not isolated!*

“Multi-node transactions in Citus provide atomicity, consistency, 
and durability guarantees, but do not provide distributed snapshot 
isolation guarantees. A concurrent multi-node query could obtain 
a local MVCC snapshot before commit on one node, and after 
commit on another”

[2] Citus: Distributed PostgreSQL for Data-Intensive Applications

Isolation levels: Citus is not ACID

* however, not everybody needs it. It depends on your app.
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https://dl.acm.org/doi/10.1145/3448016.3457551


-- Transfer 100 from Alice to Bob

BEGIN ISOLATION LEVEL REPEATABLE
READ;

UPDATE accounts
SET balance = balance - 100
WHERE name = 'Alice';

UPDATE accounts
SET balance = balance + 100
WHERE name = 'Bob';

COMMIT;

-- Calc the total balance

BEGIN ISOLATION LEVEL
REPEATABLE READ;

SELECT SUM(balance)
AS total_balance
FROM accounts;

COMMIT;

When the balance is incorrect
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Some suggest 
calling this property 
Abortability rather 
than Atomicity

Atomic commit 
does not provide
atomic visibility. 
«Atomic» means 
«all or nothing»

3 4
2PC does not 
implement 
distributed 
transactions [3]

Two-phase commit 
(2PC) achieves 
Abortability, but 
not atomic visibility

What about Atomicity?
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https://exactly-once.github.io/posts/notes-on-2pc/


Sharding in a distributed DBMS

Shard is just an implementation detail of 
a DBMS

1

For the user, there is no difference 
between a monolithic and a distributed 
DBMS: the same guarantees for any 
transactions

2
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Are wide transactions really that 
expensive? Theory.

Transaction execution time is typically 
expressed in terms of the number of 
consecutive RTTs (Round Trip Time)
and the number of I/O operations

NVMe disks — I/O can be neglected

• Postgres: 1 RTT (replication)

• Sharded Postgres: 3 RTT where 1 RTT
(replication) + 2 RTT (2PC)

• YDB: 4.5 RTT + 0.5 ms plan/batch [4]

1 2
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https://ydb.tech/docs/en/contributor/datashard-distributed-txs
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Are wide transactions really that 
expensive? A practical perspective.

1 2 3
In a multi-availability zone 
installation, the difference 
can be up to 10 ms

But distributed transactions 
are still below 50 ms

In a single availability zone 
installation, the difference 
is only a few milliseconds

In a multi region cluster, 
the difference can be 
significant. In this case if 
your workload allows, pure 
sharding might be better
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Replication
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How Many Standby 
Replicas
Are Enough?

It depends on your fault 
tolerance model, but
three replicas is a good 
minimum number (leader 
and two standby replicas)
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Async replication in 
the absence of Sync 
replication

• risk of data loss

• stale reads and anomalies

• combination of synchronous and 
asynchronous replication only with
a larger number of replicas
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The load could be distributed between two 
servers, using X/2 cores on each.

Replicas utilization in a monolith (1)

The leader uses X CPU cores for 
processing, while there are three 
servers in the cluster, each with 
X cores and 3X cores in total. 

The replicas remain idle

1

2 4

3

We want to tolerate the failure 
of one server. The original X 
cores load could be distributed 
between two servers left, using 
X/2 cores on each

Also, if replicas are used, you 
could have 3 servers with X/2 
cores each and less RAM

This usually helps reduce latency
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Replicas utilization
in a monolith (2)

1

2

With two replicas, the 'idle time’ 
is 66.6% — the same poor number 
as utilization at 99.9%

If the server has only 16–32 cores, 
it’s not that expensive

3 But what if the server has 64-128 
cores and many NVMe disks?

25



Replication in both sharded and 
distributed DBMS’s

Replicas and leaders are distributed 
across all hosts: 66.6% hardware 
utilization VS. 33.3% in a monolith 
DBMS.

Thanks to sharding, we have many 
small replication threads, which 
scale better

1 2
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2

Citus works great with single-shard 
transactions. In a multi-region 
installations it might outperform 
distributed DBMSs.

Citus is not PostgreSQL: it 
provides different guarantees for 
single- and multishard
transactions.

3

4 Don’t be afraid of YugabyteDB, 
CocrkoachDB and YDB: distributed 
transactions are not 
that expensive when you have 
a fast network.

Citus is not a distributed DBMS: 
isolation of multi-shard 
transactions is just read 
committed.

Remember that
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But when is PostgreSQL not enough?

We evaluated the performance 
of distributed DBMSs compared 
to PostgreSQL in such a small 
installation

We took TPC-C – a very popular 
OLTP benchmark, 3 powerful 
servers, and found the limit when 
PostgreSQL fails to handle it
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TPC-C results
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TPC-C
Since 1992

«The only objective comparison for 
evaluating OLTP performance» —
CockroachDB

YugabyteDB and TiDB also stated 
that TPC-C is the most objective 
performance measurement 
of OLTP systems
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Simulates an e-commerce organization

Warehouse Warehouse Warehouse Warehouse
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TPC-C logic

• Number of warehouses is a parameter
• Each warehouse (around 100 MB of data) serves 10 districts 
• Each district has a terminal
• Customers use a terminal for orders and payments
• Sometimes customers check the order status
• Delivery is handled by database as well
• Warehouses rarely make inventorization
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TPC-C transactions

44%

44%
4%
4%
4%

NewOrder

Payment

OrderStatus

Delivery

StockLevel
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TPC-C transactions

Serializable level of isolation 
(repeatable read in Postgres 
is enough)

Multi-step (interactive)

1.9:1 read-to-write ratio

tpmC integral metric: benchmark 
measures the number of New Order 
transactions per minute
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CMU Benchbase

• Multi-DBMS SQL Benchmarking 
Framework via JDBC

• Developed by Carnegie Mellon 
under Andy Pavlo’s supervision

• It’s easy to add new DBMS
and benchmarks

• The only well known 
TPC-C implementation

• YugabyteDB uses 
Benchbase fork

• We had to fork too (with a goal 
to upstream the YDB support)
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Client-side requirements for 15 000 
warehouses

150K 600 GB To test YDB running
on 3 servers, we used 5 
servers to run the 
benchmark (each 
128 cores and 
512 GB RAM)

OS threads RAM

36
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• DBMS with 9, 15, 30, 60, 81 servers

• YDB, CockroachDB, YugabyteDB

Single run in AWS
Multiple runs are usually required

$10,000

Scaling out
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Our fork and upstream

• github.com/ydb-platform/tpcc and github.com/ydb-platform/tpcc-postgres

• We plan to upstream the improvements

[5] How we switched to Java 21 virtual threads 
and got a deadlock in TPC-C for PostgreSQL

• We adapted TPC-C to Java virtual threads, which can 
lead to deadlocks in other benchmarks supported by 
Benchbase
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http://github.com/ydb-platform/tpcc
https://github.com/ydb-platform/tpcc-postgres
https://habr.com/ru/companies/ydb/articles/786550/


Tuning PostgreSQL
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Setup: 3 bare metal servers, single DC

Transparent hugepages
(huge pages for PostgreSQL)

128 logical CPU cores 
Two Intel Xeon Gold 6338 CPU @ 2.00GHz, 
hyper-threading is turned on

512 GB
RAM

4 NVMe disks 
RAID0 for PostgreSQL

Ubuntu 20.04.3 LTS

40



DBMS should survive a single 
server failure

PostgreSQL has two
sync replicas

CockroachDB and YDB 
use replication factor 3
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In PostgreSQL, everything is configurable!

Write-ahead 
log

1
B-Tree

2
Execution 
engine

3
Replication

4

I/O

42
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Our approach to tuning
From fault-intolerant and extremely fast to slower, 
but fault-tolerant PostgreSQL

Three NVMe RAID0 — data, One NVMe — WAL:

1. Unlogged tables with replication turned off: NoWAL

2. Huge WAL (Recovery time is tens of minutes) with ideal I/O distribution: 
HugeWAL

3. Two sync replicas: ReplicationCfg1

Two NVMe RAID0 — data, two NVMe RAID0 — WAL:

4. Two sync replicas with synchronous_commit = apply: ReplicationCfg2
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* The results are not officially recognized TPC results and are not 
comparable with other TPC-C test results published on the TPC website.
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PostgreSQL configurations evaluation
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Results summary

[6] More details on configurations and results.

Fault-intolerant PostgreSQL
is incredibly fast1

With replication, the 
result is twice as slow, 
but still good

2

PostgreSQL replicas use 
only one thread to apply 
the WAL

3

Synchronous replication in 
PostgreSQL is a bottleneck and 
limits vertical scalability

4
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https://blog.ydb.tech/when-postgres-is-not-enough-performance-evaluation-of-postgresql-vs-distributed-dbmss-23bf39db2d31


Is 200K tpmC a lot?

Leader server:

• WAL write 400 MB/s, 

• data write 600 MB/s

• read 700 MB/s

• network consumption 9 Gbit/s

• CPU usage: on average 20 cores 
(out of 128)

~8 000 
interactive transactions per second

~130 000 
database requests (queries) per second
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Can distributed DBMSs show 
comparable results on the 
same hardware?
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PostgreSQL vs. distributed DBMSs
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YDB
Open-Source Distributed SQL Database

OLTP, OLAP, Kafka-like topics

Transactions between topics 
and tables 

1

Strong consistency2

Apache 2.0 license4

Star ydb-platform on GitHub5

Clusters with thousands of servers3
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Partial PostgreSQL 
compatibility [7].

http://github.com/ydb-platform/ydb
https://pgconf.in/conferences/pgconfin2024/program/proposals/602


CockroachDB
Open-Source Distributed SQL Database

OLTP only

1 Strong consistency2
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Partial PostgreSQL 
compatibility



* The results are not officially recognized TPC results and are not 
comparable with other TPC-C test results published on the TPC website.
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Postgres NewOrder Latencies*, seconds (lower is better)
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p99.9 0.19 ***
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p90.0 0.099 ***
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* The results are not officially recognized TPC results and are not 
comparable with other TPC-C test results published on the TPC website.
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NewOrder latency в Postgres

Each peak 
corresponds to the 
start of a checkpoint

Sessions are 'hanging' 
waiting for IPC: 
SyncRep

This is an architectural 
issue (only 1 thread for 
receiving and applying 
WAL by replicas)
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Conclusions

PostgreSQL is highly efficient, but:
1. It does not scale horizontally.
2. Synchronous replication limits vertical scaling and it’s not 

always possible to just add more cores and RAM.

1

Citus-like solutions are not 
ACID-compliant and do not 
provide the same guarantees 
as PostgreSQL in case of multi-
shard (distributed) transactions.

2 When you need serializable 
distributed transactions, consider 
distributed DBMSs: they are more 
efficient than commonly believed.

3

54



Questions?

Evgenii Ivanov (twitter: @eivanov89),
Principal Software Developer, YDB

Slides and materials


