
Sharded and Distributed Are Not
the Same: What You Must Know
When PostgreSQL Is Not
Enough

Evgenii Ivanov,
Principal Software Developer, YDB

2

• YDB developer
• Amateur speaker
• Outside YDB I enjoy spending time

with my family, aerial photography,
and reading

About myself

3

Rumors about YDB
and YugabyteDB

• Many believe that YDB and YugabyteDB
are the same thing

• Others say we once had a bar fight

4

The truth

• YDB and YugabyteDB are different
distributed DBMSs

• We enjoy discussing topics related
to benchmarking and distributed systems

01

DBMS types
and sharding
a monolith

5

1. No synchronous replication:
it’s OK to lose data

2. Monolith DBMS like PostgreSQL:
scalability is limited

3. Sharded or Distributed DBMS: many
users and large-scale project

4. Distributed DBMS: consistent global
snapshot, on-the-fly scaling at any time

DBMS usage
evolution

6

It’s not just about performance

All of this implies replication
And efficiency of resource utilization
depends on whether we use replicas
for query processing or not

• Availability
• Durability

7

What we will talk about today

88

1

2

3

4

We will discuss myths related to
sharding, wide/distributed transactions,
and two-phase commit

In case of multi-shard transactions Citus-
like solutions are not ACID and do not
provide the same guarantees as
PostgreSQL

Using TPC-C as an example, we will
show that PostgreSQL is highly
efficient, but synchronous replication
might limit vertical scaling

Distributed DBMSs are more efficient
than commonly believed

Myths and
misconceptions

02
9

Monolith sharding

1. Instead of a single DBMS, we have
N DBMSs, managed by a coordinator
(routing layer).

2. Single-shard and multi-shard
(wide) transactions.

3. Shards are visible to the user, as
single-shard and multi-shard transactions
have different guarantees.

10

All your
transactions
need is ACID

• Atomicity
• Consistency
• Isolation
• Durability

11

Isolation levels

Serializable — the default level in SQL
standard, CockroachDB and YDB.
Anomalies are impossible.

Weaker isolation levels
(anomalies are possible [1]):

• repeatable read (snapshot isolation)

• read committed — the default in
PostgreSQL

• read uncommitted

12

https://blog.ydb.tech/do-we-fear-the-serializable-isolation-level-more-than-we-fear-subtle-bugs-5a025401b609

Isolation levels: practical considerations

Serializable

DBMS is the one who takes care
about A-C-I-D.

Weaker isolation levels

Application developer is responsible
for transaction isolation.

13

Wide transactions in Citus are not isolated!*

“Multi-node transactions in Citus provide atomicity, consistency,
and durability guarantees, but do not provide distributed snapshot
isolation guarantees. A concurrent multi-node query could obtain
a local MVCC snapshot before commit on one node, and after
commit on another”

[2] Citus: Distributed PostgreSQL for Data-Intensive Applications

Isolation levels: Citus is not ACID

* however, not everybody needs it. It depends on your app.

14

https://dl.acm.org/doi/10.1145/3448016.3457551

-- Transfer 100 from Alice to Bob

BEGIN ISOLATION LEVEL REPEATABLE
READ;

UPDATE accounts
SET balance = balance - 100
WHERE name = 'Alice';

UPDATE accounts
SET balance = balance + 100
WHERE name = 'Bob';

COMMIT;

-- Calc the total balance

BEGIN ISOLATION LEVEL
REPEATABLE READ;

SELECT SUM(balance)
AS total_balance
FROM accounts;

COMMIT;

When the balance is incorrect

15

1 2
Some suggest
calling this property
Abortability rather
than Atomicity

Atomic commit
does not provide
atomic visibility.
«Atomic» means
«all or nothing»

3 4
2PC does not
implement
distributed
transactions [3]

Two-phase commit
(2PC) achieves
Abortability, but
not atomic visibility

What about Atomicity?

16

https://exactly-once.github.io/posts/notes-on-2pc/

Sharding in a distributed DBMS

Shard is just an implementation detail of
a DBMS

1

For the user, there is no difference
between a monolithic and a distributed
DBMS: the same guarantees for any
transactions

2

17

Are wide transactions really that
expensive? Theory.

Transaction execution time is typically
expressed in terms of the number of
consecutive RTTs (Round Trip Time)
and the number of I/O operations

NVMe disks — I/O can be neglected

• Postgres: 1 RTT (replication)

• Sharded Postgres: 3 RTT where 1 RTT
(replication) + 2 RTT (2PC)

• YDB: 4.5 RTT + 0.5 ms plan/batch [4]

1 2

18

https://ydb.tech/docs/en/contributor/datashard-distributed-txs

19

Are wide transactions really that
expensive? A practical perspective.

1 2 3
In a multi-availability zone
installation, the difference
can be up to 10 ms

But distributed transactions
are still below 50 ms

In a single availability zone
installation, the difference
is only a few milliseconds

In a multi region cluster,
the difference can be
significant. In this case if
your workload allows, pure
sharding might be better

20

Replication

21

How Many Standby
Replicas
Are Enough?

It depends on your fault
tolerance model, but
three replicas is a good
minimum number (leader
and two standby replicas)

22

Async replication in
the absence of Sync
replication

• risk of data loss

• stale reads and anomalies

• combination of synchronous and
asynchronous replication only with
a larger number of replicas

23

The load could be distributed between two
servers, using X/2 cores on each.

Replicas utilization in a monolith (1)

The leader uses X CPU cores for
processing, while there are three
servers in the cluster, each with
X cores and 3X cores in total.

The replicas remain idle

1

2 4

3

We want to tolerate the failure
of one server. The original X
cores load could be distributed
between two servers left, using
X/2 cores on each

Also, if replicas are used, you
could have 3 servers with X/2
cores each and less RAM

This usually helps reduce latency

24

Replicas utilization
in a monolith (2)

1

2

With two replicas, the 'idle time’
is 66.6% — the same poor number
as utilization at 99.9%

If the server has only 16–32 cores,
it’s not that expensive

3 But what if the server has 64-128
cores and many NVMe disks?

25

Replication in both sharded and
distributed DBMS’s

Replicas and leaders are distributed
across all hosts: 66.6% hardware
utilization VS. 33.3% in a monolith
DBMS.

Thanks to sharding, we have many
small replication threads, which
scale better

1 2

26

1

2

Citus works great with single-shard
transactions. In a multi-region
installations it might outperform
distributed DBMSs.

Citus is not PostgreSQL: it
provides different guarantees for
single- and multishard
transactions.

3

4 Don’t be afraid of YugabyteDB,
CocrkoachDB and YDB: distributed
transactions are not
that expensive when you have
a fast network.

Citus is not a distributed DBMS:
isolation of multi-shard
transactions is just read
committed.

Remember that

27

1 2

But when is PostgreSQL not enough?

We evaluated the performance
of distributed DBMSs compared
to PostgreSQL in such a small
installation

We took TPC-C – a very popular
OLTP benchmark, 3 powerful
servers, and found the limit when
PostgreSQL fails to handle it

28

TPC-C results

03
29

TPC-C
Since 1992

«The only objective comparison for
evaluating OLTP performance» —
CockroachDB

YugabyteDB and TiDB also stated
that TPC-C is the most objective
performance measurement
of OLTP systems

30

Simulates an e-commerce organization

Warehouse Warehouse Warehouse Warehouse

31

TPC-C logic

• Number of warehouses is a parameter
• Each warehouse (around 100 MB of data) serves 10 districts
• Each district has a terminal
• Customers use a terminal for orders and payments
• Sometimes customers check the order status
• Delivery is handled by database as well
• Warehouses rarely make inventorization

32

TPC-C transactions

44%

44%
4%
4%
4%

NewOrder

Payment

OrderStatus

Delivery

StockLevel

33

TPC-C transactions

Serializable level of isolation
(repeatable read in Postgres
is enough)

Multi-step (interactive)

1.9:1 read-to-write ratio

tpmC integral metric: benchmark
measures the number of New Order
transactions per minute

34

CMU Benchbase

• Multi-DBMS SQL Benchmarking
Framework via JDBC

• Developed by Carnegie Mellon
under Andy Pavlo’s supervision

• It’s easy to add new DBMS
and benchmarks

• The only well known
TPC-C implementation

• YugabyteDB uses
Benchbase fork

• We had to fork too (with a goal
to upstream the YDB support)

35

Client-side requirements for 15 000
warehouses

150K 600 GB To test YDB running
on 3 servers, we used 5
servers to run the
benchmark (each
128 cores and
512 GB RAM)

OS threads RAM

36

37

• DBMS with 9, 15, 30, 60, 81 servers

• YDB, CockroachDB, YugabyteDB

Single run in AWS
Multiple runs are usually required

$10,000

Scaling out

37

Our fork and upstream

• github.com/ydb-platform/tpcc and github.com/ydb-platform/tpcc-postgres

• We plan to upstream the improvements

[5] How we switched to Java 21 virtual threads
and got a deadlock in TPC-C for PostgreSQL

• We adapted TPC-C to Java virtual threads, which can
lead to deadlocks in other benchmarks supported by
Benchbase

38

http://github.com/ydb-platform/tpcc
https://github.com/ydb-platform/tpcc-postgres
https://habr.com/ru/companies/ydb/articles/786550/

Tuning PostgreSQL

04
39

Setup: 3 bare metal servers, single DC

Transparent hugepages
(huge pages for PostgreSQL)

128 logical CPU cores
Two Intel Xeon Gold 6338 CPU @ 2.00GHz,
hyper-threading is turned on

512 GB
RAM

4 NVMe disks
RAID0 for PostgreSQL

Ubuntu 20.04.3 LTS

40

DBMS should survive a single
server failure

PostgreSQL has two
sync replicas

CockroachDB and YDB
use replication factor 3

41

In PostgreSQL, everything is configurable!

Write-ahead
log

1
B-Tree

2
Execution
engine

3
Replication

4

I/O

42

5

Our approach to tuning
From fault-intolerant and extremely fast to slower,
but fault-tolerant PostgreSQL

Three NVMe RAID0 — data, One NVMe — WAL:

1. Unlogged tables with replication turned off: NoWAL

2. Huge WAL (Recovery time is tens of minutes) with ideal I/O distribution:
HugeWAL

3. Two sync replicas: ReplicationCfg1

Two NVMe RAID0 — data, two NVMe RAID0 — WAL:

4. Two sync replicas with synchronous_commit = apply: ReplicationCfg2

43

* The results are not officially recognized TPC results and are not
comparable with other TPC-C test results published on the TPC website.

450020

352828

183317
213815

0

100000

200000

300000

400000

500000

NoWAL HugeWAL ReplicationCfg1 ReplicationCfg2

tpmC* (higher is better)

PostgreSQL configurations evaluation

44

Results summary

[6] More details on configurations and results.

Fault-intolerant PostgreSQL
is incredibly fast1

With replication, the
result is twice as slow,
but still good

2

PostgreSQL replicas use
only one thread to apply
the WAL

3

Synchronous replication in
PostgreSQL is a bottleneck and
limits vertical scalability

4

45

https://blog.ydb.tech/when-postgres-is-not-enough-performance-evaluation-of-postgresql-vs-distributed-dbmss-23bf39db2d31

Is 200K tpmC a lot?

Leader server:

• WAL write 400 MB/s,

• data write 600 MB/s

• read 700 MB/s

• network consumption 9 Gbit/s

• CPU usage: on average 20 cores
(out of 128)

~8 000
interactive transactions per second

~130 000
database requests (queries) per second

46

Can distributed DBMSs show
comparable results on the
same hardware?

47

PostgreSQL vs. distributed DBMSs

48
05

YDB
Open-Source Distributed SQL Database

OLTP, OLAP, Kafka-like topics

Transactions between topics
and tables

1

Strong consistency2

Apache 2.0 license4

Star ydb-platform on GitHub5

Clusters with thousands of servers3

49

Partial PostgreSQL
compatibility [7].

http://github.com/ydb-platform/ydb
https://pgconf.in/conferences/pgconfin2024/program/proposals/602

CockroachDB
Open-Source Distributed SQL Database

OLTP only

1 Strong consistency2

50

Partial PostgreSQL
compatibility

* The results are not officially recognized TPC results and are not
comparable with other TPC-C test results published on the TPC website.

213815
202819

157262

0

50000

100000

150000

200000

250000

Postgres YDB CockroachDB

tpmC* (throughput, higher is better)

51

Postgres NewOrder Latencies*, seconds (lower is better)

05:20 05:30 05:40 05:50 06:00 06:10
0

2

4

6

10

12

14

07 March 2024 05:37:15

p99.9 0.19 ***

Name Value

p99.9 0.19 ***
p99.0 0.12 ***

p95.0 0.11 ***

p90.0 0.099 ***

8

10

12

14

* The results are not officially recognized TPC results and are not
comparable with other TPC-C test results published on the TPC website.

52

NewOrder latency в Postgres

Each peak
corresponds to the
start of a checkpoint

Sessions are 'hanging'
waiting for IPC:
SyncRep

This is an architectural
issue (only 1 thread for
receiving and applying
WAL by replicas)

53

Conclusions

PostgreSQL is highly efficient, but:
1. It does not scale horizontally.
2. Synchronous replication limits vertical scaling and it’s not

always possible to just add more cores and RAM.

1

Citus-like solutions are not
ACID-compliant and do not
provide the same guarantees
as PostgreSQL in case of multi-
shard (distributed) transactions.

2 When you need serializable
distributed transactions, consider
distributed DBMSs: they are more
efficient than commonly believed.

3

54

Questions?

Evgenii Ivanov (twitter: @eivanov89),
Principal Software Developer, YDB

Slides and materials

